首页 | 本学科首页   官方微博 | 高级检索  
     


Transient fluid flow in and around a fault
Authors:J. Braun  S. M. Munroe   S. F. Cox
Affiliation:Research School of Earth Sciences, The Australian National University, Canberra, Australia;;SRK Consulting, Level 9, 1 York Street, Sydney 2000, Australia
Abstract:We present the results of simple numerical experiments in which we study the evolution with time of fluid flow around and within a permeable fault embedded in a less permeable porous medium. Fluid movement is driven by an imposed vertical pressure gradient. The results show that fluid flow is controlled by two timescales: τf = Sl2/κF and τF = Sl2/κM, where S is the specific storage of the porous material, l the length of the fault, and κM and κF are the hydraulic conductivities of the porous material and the fault, respectively. Fluid flow and the associated fluid pressure field evolve through three temporal stages: an early phase [t < τf] during which the initial fluid pressure gradient within the fault is relaxed; a second transient stage [τf < t < τF] when fluid is rapidly expelled at one end of the fault and extracted from the surrounding rocks at the other end leading to a reduction in the pressure gradient in the intact rock; a third phase [t < τF] characterized by a steady‐state flow. From the numerical experiments we derive an expression for the steady‐state maximum fluid velocity in the fault and the values of the two timescales, τf and τF. A comparison indicates excellent agreement of our results with existing asymptotic solutions. For km‐scale faults, the model results suggest that steady‐state is unlikely to be reached over geological timescales. Thus, the current use of parameters such as the focusing ratio defined under the assumption of steady‐state conditions should be reconsidered.
Keywords:fault    focusing ratio    numerical model    steady-state    transient fluid flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号