首页 | 本学科首页   官方微博 | 高级检索  
     

基于流形学习与光谱解混的文物表面字迹增强——以云冈第38窟为例
引用本文:王诗涵,吕书强,李丽红,侯妙乐,宁波. 基于流形学习与光谱解混的文物表面字迹增强——以云冈第38窟为例[J]. 文物保护与考古科学, 2023, 35(5): 75-82
作者姓名:王诗涵  吕书强  李丽红  侯妙乐  宁波
作者单位:北京建筑大学测绘与城市空间信息学院,北京 100044;建筑遗产精细重构与健康监测北京市重点实验室北京建筑大学,北京 100044;天津中科谱光信息技术有限公司,天津 300380;云冈石窟研究院,山西大同 037007
基金项目:国家自然科学基金项目(42171356;42171444)资助
摘    要:文物表面的文字是了解历史的关键信息,对文物表面文字信息的探索成为文物保护的重要环节。结合流形学习与光谱解混,提出一种新的文物表面字迹增强方法。首先,利用基于流形学习的等距映射方法对预处理后的高光谱图像进行非线性降维,得到信息量最大的灰度图像;其次,分析文字与背景的光谱特征,通过多层非负矩阵分解方法得到字迹丰度图;然后,将二者进行加权平均得到字迹增强图像,再与合成真彩色影像进行HSV融合,得到字迹融合影像;最后,为更好地辨认文字,在字迹增强图像上裁剪文字并做形态学变换,得到字迹提取图。以云冈石窟第38窟的一景褪色文字高光谱图像为例进行了验证,结果表明,该方法能够有效地增强出文物表面的褪色文字,且较其他增强方法效果更好。

关 键 词:高光谱图像  字迹增强  流形学习  多层非负矩阵分解  等距映射
收稿时间:2022-04-02
修稿时间:2022-09-19

Enhancement of surface handwriting on artifacts based on manifold learning and spectral unmixing:a case study of Cave 38 of Yungang Grottoes
WANG Shihan,LYU Shuqiang,LI Lihong,HOU Miaole,NING Bo. Enhancement of surface handwriting on artifacts based on manifold learning and spectral unmixing:a case study of Cave 38 of Yungang Grottoes[J]. Sciences of Conservation and Archaeology, 2023, 35(5): 75-82
Authors:WANG Shihan  LYU Shuqiang  LI Lihong  HOU Miaole  NING Bo
Affiliation:School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;Beijing Key Laboratory for Architectural Heritage Fine Reconstruction & Health Monitoring Beijing University of Civil Engineering and Architecture, Beijing 100044, China;Tianjin Progoo Information Technology Co., Ltd., Tianjin 300380, China;Yungang Grottoes Research Institute, Datong 037007, China
Abstract:The writing on the surface of artifacts provides key information for understanding history, and the exploration of it becomes an important part of artifact conservation. Combining manifold learning and spectral unmixing, we propose a new method to enhance the writing on the surface of artifacts. Firstly, isometric feature mapping based on manifold learning was used to reduce the nonlinear dimension of the preprocessed hyperspectral images, and a gray image with the most abundant information was obtained. Secondly, the spectral characteristics of text and background were analyzed, and the multilayer nonnegative matrix decomposition method was used to obtain the handwriting abundance map. Then the gray image and the abundance map of the handwriting were weighted together to obtain the handwriting enhancement image; the handwriting fusion image was obtained by HSV fusion of the handwriting enhancement image and true color image. Finally, in order to better identify the text, it was cropped on the handwriting enhancement image and morphological transformation was performed to obtain the handwriting extraction map. The hyperspectral image of a faded text in Cave 38 of Yungang Grottoes was taken as an example, the results showing that the proposed method could effectively enhance the text on the surface of cultural relics and its effect was better than those of other enhancement methods.
Keywords:Hyperspectral image   Handwriting enhancement   Manifold learning   Multilayer nonnegative matrix factorization   Isometric feature mapping
点击此处可从《文物保护与考古科学》浏览原始摘要信息
点击此处可从《文物保护与考古科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号