首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of Shake Table Tests on Out-of-Plane Masonry Buildings. Part (VI): Discrete Element Approach
Authors:F. Cannizzaro  P. B. Lourenço
Affiliation:1. Department of Civil Engineering and Architecture, Università di Catania, Catania, Italyfrancesco.cannizzaro@dica.unict.it;3. ISISE, Department of Civil Engineering, School of Engineering, University of Minho, Azurém, Portugal
Abstract:ABSTRACT

Although many experimental tests and numerical models are available in the literature, the numerical simulation of the seismic response of existing masonry buildings is still a challenging problem. While the nonlinear behavior of masonry structures is reasonably predictable when the out-of-plane behavior can be considered inhibited, when the in-plane and out-of-plane responses coexist and interact, simplified models seem unable to provide reliable numerical predictions. In this article, taking advantage of the experimental tests carried out in a shaking table on two masonry prototypes at LNEC, a macro-element approach is applied for the numerical simulations of their nonlinear response. The adopted approach allows simulating the nonlinear behavior of masonry structures considering the in-plane and out-of-plane responses. Since it is based on a simple mechanical scheme, explicitly oriented to representing the main failure mechanisms of masonry, its computational cost is greatly reduced with respect to rigorous solutions, namely nonlinear FEM approaches. Two modeling strategies are adopted, namely a regular mesh independent from the real texture of the prototypes and a detailed one coherent with the units disposal. The numerical results are discussed and the correlation between the nonlinear static analyses and the dynamic response is provided.
Keywords:fracture energy  macro-element  masonry  nonlinear dynamic analysis  shaking table
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号