首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fluid effect on hydraulic fracture propagation behavior: a comparison between water and supercritical CO2‐like fluid
Authors:X Zhou  T J Burbey
Institution:1. National Energy Technology Laboratory—Regional University Alliance (NETL‐RUA), , Pittsburgh, PA, USA;2. Department of Geosciences, Virginia Tech, , Blacksburg, VA, USA
Abstract:The initiation of hydraulic fractures during fluid injection in deep formations can be either engineered or induced unintentionally. Upon injection of CO2, the pore fluids in deep formations can be changed from oil/saline water to CO2 or CO2 dominated. The type of fluid is important not only because the fluid must fracture the rock, but also because rocks saturated with different pore fluids behave differently. We investigated the influence of fluid properties on fracture propagation behavior by using the cohesive zone model in conjunction with a poroelasticity model. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Low viscosity fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison with fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation: the time at which a crack ceases opening and the later time point at which a crack ceases propagating. These times are very different for different fluids. Both fluid compressibility and viscosity influence fracture propagation, with viscosity being the more important property. Viscosity can greatly affect hydraulic conductivity and the leak‐off coefficient. This analysis assumes the in‐situ pore fluid and injected fluid are the same and the pore space is 100% saturated by that fluid at the beginning of the simulation.
Keywords:cohesive finite element method  cohesive zone model  fracture propagation  hydraulic fracture  pore fluid
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号