首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid injection and surface deformation at the KTB location: modelling of expected tilt effects
Authors:T. JAHR  G. JENTZSCH  H. LETZ   M. SAUTER
Affiliation:Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Jena, Germany;;Geowissenschaftliches Zentrum der Universität Göttingen, Göttingen, Germany
Abstract:This investigation is indented to explore the relationship between changes in pore fluid pressure and deformation of the land surface induced by a large‐scale injection experiment at the KTB site. Deformation will be monitored by ASKANIA borehole tiltmeters at five locations. During the year 2003, a network of borehole tiltmeters was installed, data transmission links established and tested, and recording of tilt data started. Our first main interest was to receive data sets of all stations well before the injection experiment to start in May 2004, to be able to evaluate local site effects. Thus, the separation of injection‐induced effects will be more reliable. Principal 3D numerical modelling (poro‐elastic modelling and investigations, using the finite element method, FEM) of poro‐elastic behaviour showed that significant tilt amplitudes can be expected during controlled fluid injection. Observed deformation will be investigated within the framework of the fluid flow behaviour and resulting deformation. Two models have been used: a coupled hydro geomechanical finite element model (abaqus ) and, as a first step, also a multi‐layered poro‐elastic crust (poel ). With the numerical model two effects can be quantified: (i) the deformation of the upper crust (tilt measurements) and (ii) the spatial distribution and the changes of material properties in the KTB area. The main aim of the project is to improve the knowledge of coupled geomechanic–hydraulic processes and to quantify important parameters. Thus, the understanding of fracture‐dominated changes of the hydrogeological parameters will be enhanced, geomechanical parameter changes and the heterogeneity of the parameter field quantified. In addition, the induced stress field variation can be explained, which is believed to be mainly responsible for the increase of local seismic activity. Here, we introduce the tiltmeter array at the KTB site, the modelling for a poro‐elastic crust and the preliminary FEM modelling.
Keywords:fluid injection    geodynamics    KTB    modelling    tilt observations    upper crust
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号