首页 | 本学科首页   官方微博 | 高级检索  
     

基于遥感影像及在线房租数据的城市内部贫困空间测度研究——以广州市内城核心区为例
引用本文:袁媛,刘菁,陈逸敏,尤智扬. 基于遥感影像及在线房租数据的城市内部贫困空间测度研究——以广州市内城核心区为例[J]. 人文地理, 2018, 33(3): 60-67. DOI: 10.13959/j.issn.1003-2398.2018.03.008
作者姓名:袁媛  刘菁  陈逸敏  尤智扬
作者单位:1. 中山大学 地理科学与规划学院, 广东省城市化与地理环境空间模拟重点实验室, 广州 510275;
2. 华东师范大学 地理科学学院, 地理信息科学教育部重点实验室, 上海 200241;
3. 百度国际科技(深圳)有限公司, 深圳 518000
基金项目:国家自然科学基金项目(51678577);广东省科技创新青年拔尖人才项目;高校基本科研业务费中山大学重大项目培育(15lgjc38)
摘    要:学界以社会经济指标(人口普查、问卷调查等)为主导测度城市内部贫困空间,取得较好的研究成果;但是普查数据周期长、贫困群体社会经济数据可获得性低,如何制定全覆盖、多方位、易获取的测度指标是该项研究的主要挑战之一。本文尝试使用遥感影像、在线房租等公众可获取的数据,采用FETEX2.0、WEKA等软件,利用三个指标(土地覆盖指数、复杂度、单位房租)建构基于大数据的贫困指数,测度广州市内城核心区718个居委会的贫困得分。再将测度结果与利用第六次全国人口普查数据测度的贫困空间对比分析,探究两种测度方法的区别和适用性。结果显示:①两者的测度结果具有较强的一致性,尤其对前5%最贫困的居委会具有较高重合度;②本文建构的大数据贫困指数对城中村、传统工业区等典型贫困空间识别效果更好。本研究使用易获取、更新周期短的数据,有利于城市贫困空间分布的实时监测,对引导精准分配扶贫资源、有效实施贫困社区更新规划具有重要意义。

关 键 词:贫困空间测度  城市贫困  内城核心区  广州市  大数据  
收稿时间:2017-12-06

POVERTY MEASUREMENT OF URBAN INTERNAL SPACE BASED ON REMOTE SENSING IMAGES AND ONLINE RENTAL INFORMATION: A CASE STUDY OF THE CITY CORE OF GUANGZHOU
YUAN Yuan,LIU Jing,CHEN Yi-min,YOU Zhi-yang. POVERTY MEASUREMENT OF URBAN INTERNAL SPACE BASED ON REMOTE SENSING IMAGES AND ONLINE RENTAL INFORMATION: A CASE STUDY OF THE CITY CORE OF GUANGZHOU[J]. Human Geography, 2018, 33(3): 60-67. DOI: 10.13959/j.issn.1003-2398.2018.03.008
Authors:YUAN Yuan  LIU Jing  CHEN Yi-min  YOU Zhi-yang
Affiliation:1. School of Geography and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geosimulation, Sun Yat-sen University, Guangzhou 510275, China;
2. School of Geographic Sciences, Key Lab. of Geographic Information Science(Ministry of Education), East China Normal University, Shanghai 200241, China;
3. Baidu International Technology(Shenzhen) Co., Ltd, Shenzhen 518000, China
Abstract:Academia has achieved remarkable results in poverty measurement mainly based on socioeconomic statistical data, such as census data and survey data. The development of wide coverage and multi-dimensionalpoverty indicators is one of the main challenges in urban poverty studies. By integratingonline rental information and remote sensing images from Google Earth and Landsat8, thisstudyproposesa BDPI (Big data poverty index), which is composed of three indicesin cluding land cover index, surface texture index and unit rent, to measure the spatial distribution of poverty in the city core of Guangzhou. 718 communities were included and a series of software such as FETEX2.0 and WEKA was applied in processes. Then the paper compares the result with the spatial distribution of multiple deprivation based on the Sixth national population census data, and study the differences between the two methods. The result shows that there is a high consistency between the two results, especially for the top 5% communities of poverty.
Keywords:poverty measurement of urban internal space  urban poverty  city core  Guangzhou  big data  
本文献已被 CNKI 等数据库收录!
点击此处可从《人文地理》浏览原始摘要信息
点击此处可从《人文地理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号