首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid-transport processes in a shallow salt-dome environment
Authors:F MAGRI  U BAYER  U MAIWALD  R OTTO  C THOMSEN
Institution:Fachrichtung Geochemie, Hydrogeologie, Mineralogie, Freie Universität Berlin –Institut für Geologische Wissenschaften, Berlin, Germany;;Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, Germany;;Landesamt für Natur und Umwelt des Landes Schleswig-Holstein, Flintbek, Germany
Abstract:In the Schleswig–Holstein region (S–H) of Germany, most observed near-surface saline ground waters originate from dissolution of shallow salt domes. Previous numerical simulations of thermohaline flow clarified the major mechanisms controlling large-scale density-driven flow. It has been found that, in addition to topographically driven flow, gravitational and thermohaline convection are the primary mechanisms for extensive solute exchange between shallow and deep aquifers. Geological features such as glacial channels control recharge/discharge processes at the surface. Here we address several previously unresolved issues: (i) the impact of a permeable unit (transition zone) between the salt and adjacent units; (ii) the role of variable brine viscosity in affecting regional- (i.e. km-) scale heat and mass patterns; and (iii) the influence of anthropogenic activities such as pumping stations on density-driven flow. We found that geophysical factors play a major role in determining the dynamics of fluid processes. The transition zone significantly influences the flow field and the distribution of heat, slowing the formation of highly concentrated salty plumes. The impact of variable fluid viscosity on the coupled heat and brine flow is twofold. In a colder and highly concentrated environment, such as a shallow salt-dome crest, it retards brine flow. In a less saline environment, variable fluid viscosity enhances thermally induced upward fluid flow. Groundwater extraction from production wells only affects brine and heat flow locally within the upper aquifers.
Keywords:brine density  German Basin  numerical modelling  pumping well  shallow salt dome  thermohaline flow  variable brine viscosity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号