首页 | 本学科首页   官方微博 | 高级检索  
     


Crack Patterns Induced by Foundation Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy
Authors:Claudio Alessandri  Massimo Garutti  Vincenzo Mallardo
Affiliation:1. Department of Engineering, University of Ferrara, Ferrara, Italy;2. Department of Architecture, University of Ferrara, Ferrara, Italy
Abstract:This study presents some numerical results related to the analysis of the structural damage of a historic masonry building, Palazzo Gulinelli, in Ferrara, Italy. A detailed analysis of the inhomogeneities of the facade, historic documentation, and recent restoration interventions carried out in an adjacent building, suggest that the Palace underwent various modifications both on the structural configuration and on the borne loads. Such modifications might be the main cause of some differential settlements and of the consequent significant crack pattern on the load-bearing walls. Therefore, in the present paper the occurrence of a crack pattern on the facade is simulated by carrying out standard linear and non-linear finite element (FE) homogenized models; differential settlements are applied in order to reproduce the structural changes occurred over time. Previous experiences of the authors (for example, Acito and Milani in 2012 and Mallardo et al. in 2008), the current crack pattern of the building (of its facade in particular) and the monitoring data referring to some of them are the main references for the analysis carried out. The structural survey, the numerical results, and the data monitoring suggest two main conclusions: 1) a good correlation between numerical results and monitoring data is assessed, therefore the cracks can be reasonably related to past differential settlements; and 2) the cracks/damage that occurred as a consequence of differential foundation settlements reduce the ability of the facade to resist seismic actions.
Keywords:historical structures  masonry  homogenization  differential settlements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号