首页 | 本学科首页   官方微博 | 高级检索  
   检索      


INTEGRATED PASSIVE-ACTIVE SYSTEM FOR SEISMIC PROTECTION OF A CABLE-STAYED BRIDGE
Authors:KYU-SIK PARK?  IN-WON LEE  HYUNG JO JUNG  JEONG-GYU PARK
Institution:1. Department of Civil and Environmental Engineering , Korea Advanced Institute of Science and Technology , 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea;2. Department of Civil and Environmental Engineering , Sejong University , 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Korea E-mail: hjung@sejong.ac.kr;3. Department of Precision Engineering , Kyoto University , Yoshidahon-machi, Sakyo-ku, Kyoto, 606-8501, Japan E-mail: jgpark@prec.kyoto-u.ac.jp
Abstract:This paper presents an integrated passive-active (i.e. hybrid) system for seismic response control of a cable-stayed bridge. Since multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e. on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the integrated passive-active control system are superior to those of the passive control system and are slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with a μ-synthesis method, and there are no signs of instability in the over-all system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used for seismically excited cable-stayed bridges.
Keywords:Hybrid control system  lead rubber bearing  hydraulic actuator  benchmark cable-stayed bridge  seismic response control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号