首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogeochemical modelling of CO2 equilibria and mass transfer induced by organic–inorganic interactions in siliciclastic petroleum reservoirs
Authors:W. van BERK    H.-M. SCHULZ   Y. FU
Affiliation:Department of Hydrogeology, Clausthal Technical University, Clausthal-Zellerfeld, Germany;;Helmholtz-Zentrum Potsdam –Deutsches GeoForschungsZentrum, Sec. 4.3, Organic Geochemistry, Potsdam, Germany
Abstract:Different feldspar types control complex hydrogeochemical processes in hydrocarbon‐bearing siliciclastic reservoirs, which have undergone different degrees of degradation. To test such processes generically, carbon dioxide equilibria and mass transfers induced by organic–inorganic interactions have been modelled for different hydrogeochemical scenarios. The approach is based on and compared with data from the Norwegian continental shelf ( Smith & Ehrenberg 1989 ) and assumes local thermodynamic equilibrium among solids and fluids. Equilibrating mineral assemblages (different feldspar types, quartz, kaolinite, calcite) are based on the primary reservoir composition. Equilibration and coupled mass transfer were triggered by the addition and reaction of different amounts of CO2, CH4 and H2 (plus acetic acid) at temperatures between 50 and 95°C (323 and 368 K). These components occur in oil fields as products of anaerobic bacterial degradation, hydrolytic disproportionation of hydrocarbons and/or thermal maturation of kerogen. We apply two different computer codes and two different thermodynamic data bases to calculate the results. Reaction of 0.32–0.6 mol CO2, 0.16–0.3 mol CH4 and 0.8–1.5 mol H2 with K‐feldspar, quartz, kaolinite and calcite in 1 l of pore water results in modelled values of 0.3–2.3 mol% CO2 in a multicomponent gas phase that resembles measured data (0.2–1.5 mol%). Similar CO2 contents result from acetic acid addition (CO2, CH4, H2 + 0.016 mol CH3COOH). Equilibration with albite or anorthite reduces the release of CO2 into the multicomponent gas phase dramatically, by 1 or 4 orders of magnitude compared with the equilibration with K‐feldspar. Minor differences in the modelled CO2 content (0.1–0.2 mol%) result from calculations with different computer codes if the same thermodynamic data base is applied. Relevant differences (up to 1.9 mol% CO2) result from calculations using different thermodynamic data bases.
Keywords:carbon dioxide    carbonate    feldspar    hydrogeochemical modelling    sedimentary basin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号