首页 | 本学科首页   官方微博 | 高级检索  
     


Anomalous fading and crystalline structure: Studies on individual chondrules from the same parent body
Authors:Rabiul Haque Biswas  Ashok Kumar Singhvi
Affiliation:1. Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009, India
Abstract:Plagioclase feldspar is the major luminescent mineral in meteorites. Thermoluminescence (TL) characteristics, peak temperature (Tm), full width at half maximum (FWHM), ratio of high (HT) to low temperature (LT) peak, and TL sensitivity (TL/dose/mass) to an extent reflect degree of crystallinity of the mineral. The present study explores and establishes a correlation between quantum mechanical anomalous (athermal) fading and structural state by examining TL of individual chondrules. Chondrules were separated using freeze-thaw technique from a single fragment of Dhajala meteorite. The results show large variation in Tm (155?230°C), FWHM (80?210°C) and HT/LT (0.07–0.47) and seem to be positively correlated. TL sensitivity (ranging from 14 to 554 counts/s/Gy/mg) decreases with increasing Tm and FWHM. Large variations in TL parameters (Tm, FWHM, HT/LT, and Sensitivty) suggest that individual chondrules had different degree of crystallization. Thermal annealing experiments suggest that comparatively ordered form of feldspar can be converted to a disordered form by annealing the sample at high temperatures (1000°C) for long time (10 hr) in vacuum (1 mbar pressure) condition and rapidly cooling it. Measured anomalous fading suggest that fading rate increases as the crystal form changes from an ordered state to a disordered state. However, the fading rate becomes nearly negligible for the most disordered feldspars.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号