首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamic study of capillary pressure curves based on free energy minimization
Authors:Y Deng  L W Lake
Institution:Department of Petroleum and Geosystems Engineering, the University of Texas, Austin, TX, USA
Abstract:This paper presents a new method for pore level network simulation of the distribution of two immiscible phases in a permeable medium. The method requires that the Helmholtz free energy of the system — the medium and the two phases contained within the pore space — be a minimum at all saturation states. We describe the method here and show some typical results from a computer algorithm that implements it. The results include (i) an explanation of the ‘scanning’ behaviour of capillary pressure curves based wholly on the free energy minimization, (ii) predictions of capillary pressure at arbitrary wetting states, including negative capillary pressures, and (iii) illustrations of how the minimized free energy changes along the scanning curves. The method also predicts the known dependency of the capillary pressure on the pore size distribution and interfacial tension. The current work is restricted to two‐dimensional networks, but the free energy minimization appears to be generalizable to three dimensions and to more than two fluid phases. Moreover, functions generated through the minimization, specifically contact areas between the medium surface and the phases, appear to have applications predicting other multiphase petrophysical properties.
Keywords:capillary pressure  capillary pressure hysteresis  drainage  free energy  imbibition  network models  scanning loop  thermodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号