首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Origin of deep saline groundwaters in the Vienne granitic rocks (France): constraints inferred from boron and strontium isotopes
Authors:J Casanova  PH Négrel  W Kloppmann  J F Aranyossy
Institution:BRGM, Research Division, Orléans Cedex, France;;ANDRA, Châtenay-Malabry, France
Abstract:As part of a preliminary geological characterization programme to assess the feasibility of an underground laboratory in granitic rock, a series of 17 deep boreholes (maximum depth, 900 m) was drilled by ANDRA in the Vienne district, France. A salinity gradient was demonstrated in the granitic waters with concentrations varying from approximately 1 g L?1 at 150 m depth at the top of the basement (beneath the sedimentary cover) to 10 g L?1 in the deeper part (from 400 to 600 m depth). Sr and B isotope ratios were measured in order to better understand the origin of the salinity and to evaluate the degree of water–rock interaction in the system. The results obtained were compared to those of mineral spring waters emerging from the granitic basement in the Massif Central. Evidence in support of a significant marine contribution include: (i) the Cl–Br investigations agree with a marine origin for the saline groundwaters without evolution from seawater; (ii) the 87Sr/86Sr ratio of the Vienne deep groundwaters (0.7078–0.7084) is in agreement with a palaeo‐seawater isotopic signature; (iii) measured δ11B values for the deepest brine samples are enriched in 11B (up to 36.1‰) relative to the granitic springs. The combined use of δ11B, Cl, B, Br, Sr contents and 87Sr/86Sr ratios makes it possible to define and quantify a mixing model between marine and crustal end‐members in order to explain the origin of the deep saline groundwaters in the Vienne granitic rocks.
Keywords:boron isotopes  deep groundwaters  France  mixing  strontium isotopes  Vienne granites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号