首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polar thermospheric Joule heating,and redistribution of recombination energy in the upper mesosphere
Institution:1. The Aerospace Corporation, El Segundo, CA, United States;2. Department of Physics and Astronomy, Clemson University, Clemson, SC, United States;3. High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, United States;4. UCLA, Los Angeles, CA, United States;5. School of Space and Environment, Beihang University, Beijing, China
Abstract:Kellogg, W. W. (1961, J. Met. 18, 373) suggested that transport of atomic oxygen from the summer into the winter hemisphere and subsequent release of energy by three body recombination, O + O + N2O2 + N2 + E, may contribute significantly to the so-called mesopause temperature anomaly (increase in temperature from summer to winter). Earlier model calculations have shown that Kellogg's mechanism produces about a 10% increase in the temperature from summer to winter at 90 km. This process, however, is partly compensated by differential heating from absorption of UV radiation associated with dissociation of O2. In the auroral region of the thermosphere, there is a steady (component of) energy dissipation by Joule heating (with a peak near 130 km) causing a redistribution and depletion of atomic oxygen due to wind-induced diffusion. With the removal of O. latent chemical energy normally released by three body recombination is also removed, and the result is that the temperature decreases by almost 2% near 90 km. Through dynamic feedback, this process reduces the depletion of atomic oxygen by about 25% and the temperature perturbation in the exosphere from 10% to 7% at polar latitudes. Under the influence of the internal dynamo interaction, the prevailing zonal circulation in the upper thermosphere (small in magnitude) changes direction when the redistribution of recombination energy is considered. The above described effects are very sensitive to the adopted rates of eddy diffusion. They are also strongly time dependent and are significantly reduced for disturbances associated with magnetic storms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号