首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rocking Behavior of Irregular Free-Standing Objects Subjected to Earthquake Motion
Authors:Haider Al Abadi  Vidal Paton-Cole  Emad Gad  Nelson Lam  Vipul Patel
Institution:1. Department of Engineering, La Trobe University, Melbourne, Victoria, Australia;2. Melbourne School of Design, The University of Melbourne, Victoria, Australia;3. Department of Civil and Construction Engineering, Swinburne University of Technology, Hawthorn, Victoria, Australia;4. Department of Infrastructure, The University of Melbourne, Victoria, Australia
Abstract:Free-standing rigid objects and structures are dominantly found to exhibit rocking behavior and can be vulnerable to overturning during an earthquake as demonstrated by numerous past earthquake events. Such objects are typically considered to be displacement sensitive with their rocking response being well presented by the Peak Displacement Demand (PDD) parameter of the supporting floor’s motion. This in turn can be directly related to an object’s width (along the direction of motion) for assessing its vulnerability to overturn. Such findings have been sufficiently justified by refined dynamic analysis supported by experimental evaluations which were based on rigid blocks with uniform geometric format (i.e., regular in their mass distribution). However, vulnerable rocking objects can be asymmetric and accordingly their sensitivity to floor displacement cannot be directly related to their width. The key parameter which defines irregular objects’ response to rocking motion is represented by the degree of eccentricity of their center of mass. In this study, the well-known rocking equation of motion is reconfigured and devised to model the rocking responses for 280 irregular objects undergoing eight earthquake motions which included artificial and recorded earthquakes. Analytical results obtained from solving the adjusted equation of motion were evaluated with sophisticated finite element (FE) models simulating the 280 irregular cases. This experimentally validated FE modeling approach was found to be time- and cost-effective for understating the rocking behavior of asymmetric objects as well as clarifying an interesting relationship between the object’s damping level and the condition of the supporting base (i.e., whether being provided with supports at the points of rotation or not). The rocking response of irregular objects was found to be highly influenced by the level of eccentricity of the object when excited by motions with high displacement amplitudes, while such influence was not found noticeable by wider objects. Based on the developed trends between the maximum top displacement of irregular objects and the PDD, an expression for estimating the rocking amplitudes is proposed which is a function of the object’s eccentricity.
Keywords:Irregular Objects  Rocking  Overturing  Shake-Table Experiments  Rocking Simulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号