首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   3篇
  2016年   3篇
  2014年   2篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
F. Wendler  A. Okamoto  P. Blum 《Geofluids》2016,16(2):211-230
Mineral precipitation in an open fracture plays a crucial role in the evolution of fracture permeability in rocks, and the microstructural development and precipitation rates are closely linked to fluid composition, the kind of host rock as well as temperature and pressure. In this study, we develop a continuum thermodynamic model to understand polycrystalline growth of quartz aggregates from the rock surface. The adapted multiphase‐field model takes into consideration both the absolute growth rate as a function of the driving force of the reaction (free energy differences between solid and liquid phases), and the equilibrium crystal shape (Wulff shape). In addition, we realize the anisotropic shape of the quartz crystal by introducing relative growth rates of the facets. The missing parameters of the model, including surface energy and relative growth rates, are determined by detailed analysis of the crystal shapes and crystallographic orientation of polycrystalline quartz aggregates in veins synthesized in previous hydrothermal experiments. The growth simulations were carried out for a single crystal and for grain aggregates from a rock surface. The single crystal simulation reveals the importance of crystal facetting on the growth rate; for example, growth velocity in the c‐axis direction drops by a factor of ~9 when the faceting is complete. The textures produced by the polycrystal simulations are similar to those observed in the hydrothermal experiments, including the number of surviving grains and crystallographic preferred orientations as a function of the distance from the rock wall. Our model and the methods to define its parameters provide a basis for further investigation of fracture sealing under varying conditions.  相似文献   
2.
This study reconstructs the palaeohydrogeologic evolution of the shallow‐to‐moderate Mesozoic subsidence history for the Mecsekalja Zone (MZ), a narrow metamorphic belt in the eastern Mecsek Mountains, Hungary. Brittle deformation of the MZ produced a vein system with a cement history consisting of five sequential carbonate generations and one quartz phase. Vein textures suggest different fluid‐flow mechanisms for the parent fluids of subsequent cement generations. Combined microthermometric and stable‐isotope measurements permit reconstruction of the character of subsequent fluid generations with different flow types, as defined by vein textures, yielding new information regarding the hydraulic behaviour of a metamorphic crystalline complex. Textural observations and geochemical data suggest that fracture‐controlled flow pathways and externally derived fluids were typical of some flow events, while percolation through the rock matrix and the relationship to the Cretaceous volcanism and dyke emplacement were typical of others. The difference in the mode of calcite deposition from pervasive fluids (i.e. pervasive carbonatisation along grain boundaries versus deposition in antitaxial veins) between two calcite generations related to the volcanism inspired a stress‐dependent model of antitaxial vein growth. Textural and isotope variations in a vein generation produced by the same parent fluid indicate rock‐dependent hydraulic behaviour for different rock types, distinct action of the contemporaneous fracture systems and different extents of fluid–rock interaction. Cathodoluminescence microscopy and fluid‐inclusion microthermometry shed light on the possible role of hydraulic fracturing in the formation of massive calcite. The time of formation was estimated from the isotope composition of the oldest calcite generation and its presumptive relationship with the sedimentary sequences to the north, whereas microthermometry permitted conciliation of the reconstructed flow sequence with the Mesozoic subsidence history of the Mórágy Block (including the MZ).  相似文献   
3.
We present a reconstruction of the three‐dimensional (3D) geometry and gold grade distribution of shear zone‐hosted, Au‐mineralized, quartz–tourmaline veins of the Sigma deposit (Abitibi belt). Host shears and veins form a network of anastomosing, steeply dipping structures associated with smaller subhorizontal extensional veins. Our reconstruction has been carried out using the exceptionally large geological database of the mine. From this database, we extracted the geometric position, thickness and gold grades of geometrically best‐defined steep veins contained in a representative subvolume of the deposit. These data allowed the 3D representation of 53 veins, which have been constructed by fitting surfaces through the geometrical data and by contouring thickness and gold grade. The geometry of the network is mainly characterized by: (i) a few large segmented veins, with sinuous and helicoidal shape, and typical vertical dimension of >100 m; (ii) a large number of smaller vertical veins, some of which splay off the steep veins with high dip angles; (iii) subhorizontal extension veins (joints) located at, or close to, the tips of steep veins. The absolute thickness of the vertically short veins is the same as that of the large veins, suggesting that they formed simultaneously, but only a few of them interconnect to form vertically continuous bodies. Patchy, vertically elongated zones of high dilation are present in the large veins, and are poorly correlated with Au‐rich zones. They presumably represent former high‐permeability zones of the network. The highest gold grades occur at the interconnections between the large veins and small splays or subhorizontal joints. This indicates the important role of vein interconnection for fluid flow and gold precipitation within the network. Combining the calculation of the volume of the network with the estimation of tourmaline abundance in the veins, we calculate that 2.1 × 106 m3 of tourmaline and 3.2 × 106 m3 of quartz precipitated during Au deposition.  相似文献   
4.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   
5.
X. R. Ming  L. Liu  M. Yu  H. G. Bai  L. Yu  X. L. Peng  T. H. Yang 《Geofluids》2016,16(5):1017-1042
This study investigates the Wangfu Depression of the Songliao Basin, China, as a natural analogue site for Fe migration (bleaching) and mineralization (formation of iron concretions) caused by reducing CO2‐bearing fluids that leak along fractures after carbon capture, utilization, and storage. We also examined the origin of fracture‐filling calcite veins, the properties of self‐sealing fluids, the influence of fluids on the compositions of mudstone and established a bleaching model for the study area. Our results show that iron concretions are the oxidative products of precursor minerals (pyrite and siderite) during uplift and are linked to H2S and CO2 present in early stage fluids. The precipitation of calcite veins is the result of CO2 degassing and is related to CO2, CH4, and minor heavy hydrocarbons in the main bleaching fluids. In our model, fluids preferentially enter high‐permeability fracture systems and result in the bleaching of surrounding rocks and precipitation of calcite veins. The infilling of calcite veins significantly decreases the permeability of fractures and forces the fluids to slowly enter and bleach the mudstone rocks. The Fe2+ released during bleaching migrates to elsewhere with the solutions or is reprecipitated in the calcite veins and iron concretions. The formation of calcite veins reduces the fracture space and effectively prevents fluid flow. The fluids have an insignificant effect on minerals within the mudstone. In terms of the chemistry of the mudstone, only the contents of Fe2O3, U, and Mo change significantly, with the content of U increasing in the mudstone and the contents of Fe2O3 and Mo decreasing during bleaching.  相似文献   
6.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   
7.
A group of 400–500 m long, bedding‐parallel calcite veins are exposed in the central La Popa Basin of northeastern Mexico. These veins provide a unique opportunity to determine the kilometer‐scale fluid–rock system associated with bedding‐parallel vein formation, and to test for sampling bias in studies that often use one or two samples to constrain the characteristics of regional‐scale paleohydrogeological systems. We use fluid inclusion microthermometry in conjunction with measurements of δ13C, δ18O, and 87Sr/86Sr ratios to constrain the vein‐forming fluid temperatures, compositions and sources, and compare these values along and between the veins to establish the homogeneity of the vein‐forming fluids and fluid–rock system. The δ13C values of the veins are close to those of the host rock, and average – 3.96‰ (PDB). The δ18O values of the veins are typically 1‰ lower than those of the host rocks, and average – 9.54‰ (PDB). Fluid inclusion homogenization temperatures average 137°C and inclusion salinities are all <6 wt% NaCl equivalent. The 87Sr/86Sr ratios of the veins average 0.70731 and are substantially lower than the values expected for the host rock. Calculated fluid δ18O values range from 4 to 10‰ (SMOW). The isotopic and microthermometric data indicate the veins most likely formed at depths of 3–4 km when meteoric water mixed with upward migrating, warm basinal brines. Vein microstructures and field characteristics indicate they formed from multiple slip events that most likely were associated with transport of individual fluid pulses that migrated along bedding planes. The large‐scale homogeneity of vein geochemistry is remarkable and demonstrates that only one or two samples would be sufficient to accurately characterize the kilometer‐scale paleohydrogeological system for these veins.  相似文献   
8.
Quartz veins acted as impermeable barriers to regional fluid flow and not as fluid‐flow conduits in Mesoproterozoic rocks of the Mt Painter Block, South Australia. Systematically distributed asymmetric alteration selvedges consisting of a muscovite‐rich zone paired with a biotite‐rich zone are centered on quartz veins in quartz–muscovite–biotite schist. Geometric analysis of the orientation and facing of 126 veins at Nooldoonooldoona Waterhole reveals a single direction along which a maximum of all veins have a muscovite‐rich side, irrespective of their specific individual orientation. This direction represents a Mesoproterozoic fluid‐flow vector and the veins represent permeability barriers to the flow. The pale muscovite‐rich zones formed on the downstream side of the vein and the dark biotite‐rich zones mark the upstream side. The alteration couplets formed from mica schist at constant Zr, Ga, Sc, and involved increases in Si, Na, Al and decreases in K, Fe, Mg for pale alteration zones, and inverse alteration within dark zones. The asymmetry of the alteration couplets is best explained by the pressure dependence of mineral–fluid equilibria. These equilibria, in combination with a Darcian flow model for coupled advection and diffusion, and with permeability barriers imposed by the quartz veins, simulate the pattern of both fluid flow and differential, asymmetric metasomatism. The determined vector of fluid flow lies along the regional foliation and is consistent with the known distribution of regional alteration products. The presence of asymmetric alteration zones in rock containing abundant pre‐alteration veins suggests that vein‐rich material may have generally retarded regional fluid flow.  相似文献   
9.
《庄子》文章脉络断续隐约但讲究结构艺术,《齐物论》《养生主》是内篇中最长和最短的二篇,《齐物论》结构宏复,层次井然,局部问题的论述亦讲求逻辑。《养生主》小巧精致,每章各言一事而又相互勾连。以寓言阐发养生之道颇含巧思却能浑然天成。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号