首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2013年   3篇
排序方式: 共有13条查询结果,搜索用时 296 毫秒
1.
This work concerns the stability of unreinforced masonry slender circular cross-sectional columns subjected to their own weight and eccentric vertical load. Cantilever columns are examined, considering that the material has infinitely linear elastic behavior in compression and has no tensile strength. For the analysis, an existing numerical model and solution procedure developed for the stability analysis of masonry elements with rectangular cross-section are utilized and adapted to the circular columns. For the instability of the columns, an appropriate criterion that relates the top lateral deflection to the intensity of the applied eccentric vertical load is employed. By considering a reference column, critical buckling load is obtained, behavior of the column interpreted and efficiency of the numerical model emphasized. Performing a nonlinear buckling analysis using a general purpose software on this reference column, obtained results are compared with those of the adapted procedure of the present study. Implementing parametric analyses on reference column, effects of the column slenderness, eccentricity of vertical load, elastic modulus, and self-weight on the buckling load are investigated. Presented calculation procedure provides a useful tool in order to calculate the critical loads or to check the stability of masonry circular columns.  相似文献   
2.
Although the issue of the out-of-plane response of unreinforced masonry structures under earthquake excitation is well known with consensus among the research community, this issue is simultaneously one of the more complex and most neglected areas on the seismic assessment of existing buildings. Nonetheless, its characterization should be found on the solid knowledge of the phenomenon and on the complete understanding of methodologies currently used to describe it. Based on this assumption, this article presents a general framework on the issue of the out-of-plane performance of unreinforced masonry structures, beginning with a brief introduction to the topic, followed by a compact state of art in which the principal methodologies proposed to assess the out-of-plane behavior of unreinforced masonry structures are presented. Different analytical approaches are presented, namely force and displacement-based, complemented with the presentation of existing numerical tools for the purpose presented above. Moreover, the most relevant experimental campaigns carried out in order to reproduce the phenomenon are reviewed and briefly discussed.  相似文献   
3.
The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures.  相似文献   
4.
Seismic vulnerability of unreinforced masonry buildings is studied by means of simplified out-of-plane collapse mechanisms that take into account connections with transversal walls. According to experimental evidence, the analysis assumes that failure is reached with a rigid body motion of a part of the facade that falls down. Two classes of mechanism are examined: the overturning of the facade due either to a vertical crack at the connection or a diagonal crack on the transversal wall, both defined resorting to a simple model of masonry fabric, viewed as a regular assembly of rigid blocks and elastic plastic joints with friction but no cohesion. The use of simplified mechanisms give rise to an explicit evaluation of the seismic resistance to changes in the geometry and in the masonry fabrics, that could be used by practising engineers. This formulation is developed for both static horizontal actions and ground velocity peak, in the belief that the latter probably gives a better approximation of seismic action, while also providing, by comparison with the results of static forces, an estimate of the behaviour factor for unreinforced masonry. Eventually, the analytical forecasts are compared with numerical results obtained by means of the distinct element method.  相似文献   
5.
A large part of the building population in Switzerland is made of unreinforced masonry. For the assessment of the seismic risk the evaluation of the seismic vulnerability of existing unreinforced masonry buildings is therefore crucial. In this paper a method to evaluate existing buildings, which was developed for the earthquake scenario project for Switzerland, is briefly introduced and discussed in more detail for unreinforced masonry buildings. The method is based on a non-linear static approach where the seismic demand on the building is compared with the capacity of the building. In-plane and out-of-plane behaviour are considered. Comparisons with test results from model buildings show that the proposed method suitably forecasts the capacity of a building. Finally, a numerical example of the application of the method to a building in the city of Basel is given.  相似文献   
6.
ABSTRACT

A displacement-based (DB) assessment procedure was used to predict the results of shake table testing of two unreinforced masonry buildings, one made of clay bricks and the other of stone masonry. The simple buildings were subject to an acceleration history, with the maximum acceleration incrementally increased until a collapse mechanism formed. Using the test data, the accuracy and limitations of a displacement-based procedure to predict the maximum building displacements are studied. In particular, the displacement demand was calculated using the displacement response spectrum corresponding to the actual shake table earthquake motion that caused wall collapse (or near collapse). This approach was found to give displacements in reasonable agreement with the wall’s displacement capacity.  相似文献   
7.
Abstract

A summary of dynamic measurements are presented that illustrate relations between linear seismic demand and true nonlinear response of unreinforced masonry buildings with flexible diaphragms and rocking piers subjected to a series of simulated earthquake motions.  相似文献   
8.
ABSTRACT

Oamaru, Winton, and Invercargill feature some of New Zealand’s most intact heritage precincts that are confronted by ongoing threats of seismic activity. The 2010/2011 Canterbury earthquake sequence and Canterbury Earthquakes Royal Commission of 2012, identified a nationwide trend through the proportion of deaths that occurred in public places as a result of the prevalent historic unreinforced masonry (URM) building stock. The reported study was undertaken to address urban safety and seismic risk mitigation through the lens of heritage conservation. The range of classically designed public buildings and industrial warehouses in the South Island of New Zealand were often produced by singular architectural practices, using locally sourced materials and construction techniques. It is vital to incorporate an examination of unique architectural qualities within urban seismic risk assessment and mitigation. Historic urban layout, architectural deployment of masonry, and extent of retrofits were recorded through onsite visual surveys via Geographical Information Systems and three-dimensional representation technologies. Extending the scope of information collected for engineering seismic risk assessment by focusing on the historical architectural context informs the selection of future mitigation measures. Oamaru, Winton, and Invercargill present intriguing case studies for multidisciplinary analysis, prior to testing urban-scale survey approaches within comparable historic centers across New Zealand.  相似文献   
9.
This article presents the results of the evaluation of the seismic safety of the Ancien Hôpital de Sion, an important Swiss architectural heritage building, situated in the Canton of Valais, the region with the highest seismic hazard in Switzerland. Three-dimensional Applied Element (AEM) modeling of the whole structure has been performed and validated. The adopted modeling strategy, together with nonlinear dynamic analysis, was able to represent the actual behavior and failure mechanisms typical of complex masonry structures, in addition to a good computational efficiency compared to other available numerical approaches. The local collapse mechanisms have been also studied through a kinematic limit analysis based on rigid block rotation. Both linear and nonlinear approaches have been followed together with the capacity spectrum method. The results provided by the different methodologies have been compared with the aim to provide possible insights concerning a general procedure for the assessment of the safety of such type of structures.  相似文献   
10.
The main objective of this work is to assess the vulnerability and seismic risk of typical existing modernist unreinforced masonry (URM) modernist buildings and aggregates situated in the Eixample district of Barcelona, part of the architectural heritage of the city. The context of the analysis is the methodology proposed by the Risk-UE project. The buildings are characterized by their capacity spectrum and the earthquake demand is defined by the 5% damped elastic response spectrum, considering deterministic and probabilistic earthquake scenarios. A discussion addresses the basis of the seismic damage states probabilities and the calculated damage index. An important research effort has been focused on the buildings modeling. All the architectural elements and their mechanical properties have been studied and evaluated accurately. It has been evidenced that a detailed and complete knowledge of all the structural elements existing in this type of buildings influence directly their behavior and hence the calculations and the results. The analysis of the isolated buildings and of the aggregate building has been performed for both mentioned seismic scenarios. Finally, a complete discussion of the results is included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号