首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   4篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2010年   2篇
  2006年   2篇
  2001年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
V. Vilarrasa 《Geofluids》2016,16(5):941-953
Fluid injection in deep geological formations usually induces microseismicity. In particular, industrial‐scale injection of CO2 may induce a large number of microseismic events. Since CO2 is likely to reach the storage formation at a lower temperature than that corresponding to the geothermal gradient, both overpressure and cooling decrease the effective stresses and may induce microseismicity. Here, we investigate the effect of the stress regime on the effective stress evolution and fracture stability when injecting cold CO2 through a horizontal well in a deep saline formation. Simulation results show that when only overpressure occurs, the vertical total stress remains practically constant, but the horizontal total stresses increase proportionally to overpressure. These hydro‐mechanical stress changes result in a slight improvement in fracture stability in normal faulting stress regimes because the decrease in deviatoric stress offsets the decrease in effective stresses produced by overpressure. However, fracture stability significantly decreases in reverse faulting stress regimes because the size of the Mohr circle increases in addition to being displaced towards failure conditions. Fracture stability also decreases in strike slip stress regimes because the Mohr circle maintains its size and is shifted towards the yield surface a magnitude equal to overpressure minus the increase in the horizontal total stresses. Additionally, cooling induces a thermal stress reduction in all directions, but larger in the out‐of‐plane direction. This stress anisotropy causes, apart from a displacement of the Mohr circle towards the yield surface, an increase in the size of the Mohr circle. These two effects decrease fracture stability, resulting in the strike slip being the least stable stress regime when cooling occurs, followed by the reverse faulting and the normal faulting stress regimes. Thus, characterizing the stress state is crucial to determine the maximum sustainable injection pressure and maximum temperature drop to safely inject CO2.  相似文献   
2.
We used hydrologic models to explore the potential linkages between oil‐field brine reinjection and increases in earthquake frequency (up to Md 3.26) in southeastern New Mexico and to assess different injection management scenarios aimed at reducing the risk of triggered seismicity. Our analysis focuses on saline water reinjection into the basal Ellenburger Group beneath the Dagger Draw Oil field, Permian Basin. Increased seismic frequency (>Md 2) began in 2001, 5 years after peak injection, at an average depth of 11 km within the basement 15 km to the west of the reinjection wells. We considered several scenarios including assigning an effective or bulk permeability value to the crystalline basement, including a conductive fault zone surrounded by tighter crystalline basement rocks, and allowing permeability to decay with depth. We initially adopted a 7 m (0.07 MPa) head increase as the threshold for triggered seismicity. Only two scenarios produced excess heads of 7m five years after peak injection. In the first, a hydraulic diffusivity of 0.1 m2 s?1 was assigned to the crystalline basement. In the second, a hydraulic diffusivity of 0.3 m2 s?1 was assigned to a conductive fault zone. If we had considered a wider range of threshold excess heads to be between 1 and 60 m, then the range of acceptable hydraulic diffusivities would have increased (between 0.1–0.01 m2 s?1 and 1–0.1 m2 s?1 for the bulk and fault zone scenarios, respectively). A permeability–depth decay model would have also satisfied the 5‐year time lag criterion. We also tested several injection management scenarios including redistributing injection volumes between various wells and lowering the total volume of injected fluids. Scenarios that reduced computed excess heads by over 50% within the crystalline basement resulted from reducing the total volume of reinjected fluids by a factor of 2 or more.  相似文献   
3.
The domestic architecture in the rural villages of ?zmir comprises a unique built environment with their masonry wall textures, semi-open sofas, round tiled-hipped roofs, and chimneys, and represents an important part of the cultural and architectural heritage. This assessment is mainly based on field observations that focus on the architectural and structural layout of intact, damaged, and destroyed houses. During field observation and the analysis of data certain plan typologies and relationships between the geological formations of the region and choice of materials and construction techniques were observed. While load-bearing masonry and timber skeleton systems are common, extensive use of timber laces, stone, and fired or adobe brick masonry with mud mortar and timber frames infilled with masonry materials were frequently seen. Generally, round timber elements such as wall plates, laces, lintels, posts, and frames of flooring systems are used. Architectural degenerations in authentic houses, defective details and partially due to the earthquake-prone nature of the region seismicity have been evaluated. An overall approach for the preservation and sustainability of this heritage is suggested.  相似文献   
4.
F. Simpson 《Geofluids》2001,1(2):123-136
The brittle–ductile transition has been suggested to provide a mechanical trap to deep crustal fluids. The mechanism was advanced as a way of reconciling the geophysical case for a wet lower crust, founded on the revelation of deep crustal electrical conductors and seismic reflectors, with the problem of maintaining interconnected, low‐density fluids in stable crust for geologically significant timescales. Although some deep crustal conductors are now attributed to graphite, the hypothesis of fluid trapping at the brittle–ductile transition has been widely adopted in electromagnetic literature, with no regard to tectonic regime, and in association with standardized temperatures of 300–450°C. Meanwhile, petrologists continue to argue that the lower crust is dry. This paper re‐examines the arguments on which the hypothesis of fluid trapping at the brittle–ductile transition has been founded, and concludes that there is a geophysical case for a dry lower crust based on electromagnetic studies. The magnetotelluric (MT) technique yields electrical conductances (conductivity–thickness products) that are direction dependent (or anisotropic). The necessity of considering direction‐dependent conductances, rather than a bulk conductance, is demonstrated using data from Saxothuringia, Germany. A quantitative model is developed to facilitate joint interpretation of the maximum conductance and the anisotropy of conductance (ratio of maximum to minimum conductance). The model yields quantitative arguments against fluids being the principal cause of deep crustal electrical conductivity, because unreasonably thick layers and unreasonably high porosities are required.  相似文献   
5.
We model pore‐pressure diffusion caused by pressurized waste‐fluid injection at two nearby wells and then compare the buildup of pressure with the observed initiation and migration of earthquakes during the early part of the 2010–2011 Guy–Greenbrier earthquake swarm. Pore‐pressure diffusion is calculated using MODFLOW 2005 that allows the actual injection histories (volume/day) at the two wells to diffuse through a fractured and faulted 3D aquifer system representing the eastern Arkoma basin. The aquifer system is calibrated using the observed water‐level recovery following well shut‐in at three wells. We estimate that the hydraulic conductivities of the Boone Formation and Arbuckle Group are 2.2 × 10?2 and 2.03 × 10?3 m day?1, respectively, with a hydraulic conductivity of 1.92 × 10?2 m day?1 in the Hunton Group when considering 1.72 × 10?3 m day?1 in the Chattanooga Shale. Based on the simulated pressure field, injection near the relatively conductive Enders and Guy–Greenbrier faults (that hydraulically connect the Arbuckle Group with the underlying basement) permits pressure diffusion into the crystalline basement, but the effective radius of influence is limited in depth by the vertical anisotropy of the hydraulic diffusivity. Comparing spatial/temporal changes in the simulated pore‐pressure field to the observed seismicity suggests that minimum pore‐pressure changes of approximately 0.009 and 0.035 MPa are sufficient to initiate seismic activity within the basement and sedimentary sections of the Guy–Greenbrier fault, respectively. Further, the migration of a second front of seismicity appears to follow the approximately 0.012 MPa and 0.055 MPa pore‐pressure fronts within the basement and sedimentary sections, respectively.  相似文献   
6.
This paper presents a probabilistic seismic hazard assessment of Tehran, the capital of Iran. Two maps have been prepared to indicate the earthquake hazard of Tehran and its vicinity in the form of iso-acceleration contour lines. They display the probabilistic estimate of Peak Ground Acceleration (PGA) over bedrock for the return periods of 475 and 950 years. Tehran is a densely populated metropolitan in which more than 10 million people live. Many destructive earthquakes happened in Iran in the last centuries. It comes from historical references that at least 6 times, Tehran has been destroyed by catastrophic earthquakes. The oldest one happened in the 4th century BC. A collected catalogue, containing both historical and instrumental events and covering the period from the 4th century BC to 1999 is then used. Seismic sources are modelled and recurrence relationship is established. For this purpose the method proposed by Kijko [2000] was employed considering uncertainty in magnitude and incomplete earthquake catalogue. The calculations were performed using the logic tree method and three weighted attenuation relationships; Ramazi [1999], 0.4, Ambraseys and Bommer [1991], 0.35, and Sarma and Srbulov [1996], 0.25. Seismic hazard assessment is then carried out for 12×11 grid points using SEISRISK III. Finally, two seismic hazard maps of the studied area based on Peak Ground Acceleration (PGA) over bedrock for 10% probability of exceedance in two life cycles of 50 and 100 years are presented. The results showed that the PGA ranges from 0.27(g) to 0.46(g) for a return period of 475 years and from 0.33(g) to 0.55(g) for a return period of 950 years. Since population is very dense in Tehran and vulnerability of buildings is high, the risk of future earthquakes will be very significant.  相似文献   
7.
A study aimed at evaluating earthquake damage scenarios and seismic hazard of Messina using historical data, is presented. The analysis of coeval reports allowed us to reconstruct the seismic history of the city and to obtain a homogeneous earthquake site catalogue based on intensity assessed by the European Macroseismic Scale 1998. In the last 1200 years Messina was destroyed once (1908, intensity X-XI EMS) and suffered effects estimated between intensities VII and IX EMS many times (e.g. 853, 1169, 1494, 1509, 1599, 1693, 1783, 1894, 1909). Destruction or severe damage which affected the city are mainly related to earthquakes occurring in the Messina Straits and Southern Calabria, while slighter, moderate effects are usually due to shocks taking place in the seismogenic sources of SE Sicily, Gulf of Patti and Northern Calabria. The damage scenarios of the most relevant events, delineated using coeval urban plans of the city, showed that damage distribution is strongly conditioned by the different soil response. A probabilistic seismic hazard assessment was obtained by using site observed intensities: The expected intensity in a time span of 50 years (i.e. maximum intensity characterised by at least 10% exceedance probability in 50 years) is DC EMS; the expected intensity in a time span of 300 years (10% exceedance probability in 300 years) is X EMS.  相似文献   
8.
The variation of permeability with depth can be probed indirectly by various means, including hydrologic models that use geothermal data as constraints and the progress of metamorphic reactions driven by fluid flow. Geothermal and metamorphic data combine to indicate that mean permeability ( k ) of tectonically active continental crust decreases with depth ( z ) according to log  k  ≈ −14–3.2 log  z , where k is in m2 and z in km. Other independently derived, crustal-scale k – z relations are generally similar to this power-law curve. Yet there is also substantial evidence for local-to-regional-scale, transient, permeability-generation events that entail permeabilities much higher than these mean k – z relations would suggest. Compilation of such data yields a fit to these elevated, transient values of log  k  ≈ −11.5–3.2 log  z , suggesting a functional form similar to that of tectonically active crust, but shifted to higher permeability at a given depth. In addition, it seems possible that, in the absence of active prograde metamorphism, permeability in the deeper crust will decay toward values below the mean k – z curves. Several lines of evidence suggest geologically rapid (years to 103 years) decay of high-permeability transients toward background values. Crustal-scale k – z curves may reflect a dynamic competition between permeability creation by processes such as fluid sourcing and rock failure, and permeability destruction by processes such as compaction, hydrothermal alteration, and retrograde metamorphism.  相似文献   
9.
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal‐monitoring effort encompassing 25 sites and 10 of the highest‐risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was <2.5°C at Mount Baker. Variability in ground temperature records from the summit fumarole sites is temperature‐dependent, with the hottest sites tending to show less variability. Seasonal variability in the hydrothermal solute flux from magmatically influenced springs varied from essentially undetectable to a factor of 5–10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt‐influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities approximately ≥ 0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast‐evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long‐term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal‐monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.  相似文献   
10.
We reappraise the material needed to assess the 20th-century seismicity of Switzerland and of the adjacent areas of the Alps in terms of magnitude. For this we make use of macroseismic reports and literature and by calculating the surface-wave magnitude from the Prague formula of all significant earthquakes in the region. No attempt is made to relocate earthquake positions; instead their reliability is ranked using existing solutions and macroseismic observations We find that for small earthquakes (M s >4.5), which constitute the bulk of the events in the region, the calculation of M s observed at relatively short distances, requires station and distance corrections which can be significant. Also we find that recomputed Ms estimates differ from those reported in other earthquake catalogues. From this reappraisal of M s and from a uniform re-evaluation of the associated macroseismic data, we derive a stable correlations between M s and felt areas that can be used to assess the magnitude of historical, pre-instrumental, events for which only isoseismal radii (r i ) and the associated intensities (I i ) are available. We examined the conversion of surface-wave magnitude into moment magnitude, a conversion that presents some interesting problems for relatively small events for which the M s -log(Mo) scaling changes. We conclude that the rate of moment release derived from events of M s >4.0 is small, and that it should be associated with horizontal and vertical velocity rates of less than 1 mm/yr, too small vo be confirmed by GPS measurements over short periods of time so that can be used to constrain hazard assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号