首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   2篇
  2020年   10篇
  2019年   4篇
  2018年   25篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   1篇
  2013年   74篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  1991年   1篇
排序方式: 共有148条查询结果,搜索用时 46 毫秒
1.
The seismic vulnerability of city centers is commonly assessed by extending the study methods applied to single buildings to urban aggregations. This approach is not always applicable at territorial scale, as it is uneconomical in terms of time and costs. An innovative method provides reasonable large-scale a priori estimation of parameters not directly evaluable from the exterior of buildings by elaborating values which can be measured from the outside. Those parameters are treated as continuous variables, by assigning them a suitable probability density function. The Bayesian approach is adopted, which allows the update of initial hypotheses by using new data gathered during on-site surveys. In this regard, a rapid survey form for the on-site data collection is proposed. An example of its application to a façade of a building structural unit in Santo Stefano di Sessanio in L’Aquila province (Italy) is proposed, showing promising preliminary results for buildings belonging to Italian historical centers.  相似文献   
2.
Historical towers, in particular medieval towers, are an important part of cultural heritage, and their preservation mandates monitoring and detailed analyses of vulnerability under seismic actions as well as of their long-term performance. Certain aspects of structural nature are linked to the masonry behavior as a unilateral material, and other are aspects related to the interaction with soft soil conditions. This study aims to contribute to the aspects of preservation by exploring the role of the soil-structure interaction in predicting the behavior of the structures, with specific reference to the well-documented case history of the medieval Ghirlandina Tower (Modena, Italy). A significant contribution comes from an experimental identification analysis, performed in the presence of ambient vibration. A novel finding is that the soil structure interaction cannot be neglected, in contrast to most published identification analyses that usually assume the structure to have rigid constraint at base.  相似文献   
3.
Buddhist monasteries in Sikkim Himalayas constitute important religious and architectural heritage. These random rubble (RR) stone masonry structures located in high seismically active regions of the Himalayas have suffered varied degrees of damages in the past earthquakes. The study presents seismic vulnerability assessment of four archetypal monastic temples using finite element (FE) analyses. Linear and nonlinear analyses of these structures were conducted in Abaqus FE environment. These analyses identified the damage prone areas of the structures and provided load-deformation behavior under lateral loads. Fragility analyses indicate a high probability of collapse for the specified design level earthquake of the region. The study shows that performance of the structure can be enhanced by improving the strength and stiffness of the stone masonry walls.  相似文献   
4.
Archaeological research on disasters has increased substantially since Sheets's 1980 review of the topic, and with heightened media coverage and funding for the study of such events, archaeological interest will continue to grow. This paper examines how prehistorians have incorporated disasters into their research since 1980, using the literature on El Niño as an illustrative case, and assesses this work in relation to geographical approaches to disaster as well as concepts that have been developed within the new ecologies.  相似文献   
5.
ABSTRACT

Historic heritage buildings are a part of historic basis of each society and an economic resource. Therefore, preserving and maintenance of these buildings are cultural, economic and social demand. This research investigates the seismic performance of a historical building named Arg of Tabriz (Arge Alishah) that dates back to 14th century and is located at the city center of Tabriz (NW of Iran). Static, modal, and finally nonlinear dynamic (time history) analysis were performed by both “Considering Soil-Structure Interaction (SSI)” and “fixed base (ignoring SSI)” Cases.

It is found from the results that, SSI extremely affects mode shapes and their frequencies and depending on the frequency content of the records, can has an incremental or decremental effect on structural responses. As expected, the building of Arg could carry gravity loads easily and despite its stability against earthquake loading in fixed base case, showed a weakness (especially in eastern and western walls direction) and overturned when it was analyzed in SSI case because of yielding of the surrounding soil.  相似文献   
6.
7.
8.
The Basilica of San Francesco in Assisi endured stronger earthquakes for centuries before 1997 earthquake, which generated the collapse of the two vaults. Experts blame as possible reasons of collapse the damage cumulated from previous earthquakes and/or the retrofitting made to the structure over its lifetime. This article presents the history of the retrofit interventions of the Basilica through the centuries, focusing mainly on the roof, which has been subjected to three major restorations through its life. It is shown using simple analytical models that the cumulative effects of the changes made to the roof of the Basilica affected the structure’s dynamic behavior in a negative manner, increasing the seismic loads on the existing structural members. In particular, the numerical results show that the 1958 roof intervention has stiffened the structure, redistributing the seismic loads on the façade and the transept. This overload might explain the collapse of the two Gothic vaults during 1997 earthquake.  相似文献   
9.
A framework for quick seismic assessment and retrofit of traditional unreinforced masonry (URM) structures is presented. The proposed methods build on simple principles of structural dynamics and are used as an alternative to detailed time-history analysis, in recognition of the prevailing need for simple and practical methods, compatible with the low-budget and the limited level of knowledge regarding materials, internal force paths, connectivity and condition of older URM structures. An objective is to identify areas in the building that are particularly susceptible to damage and for guiding the types of the required global interventions to improve seismic response. Demand and supply are expressed in terms of relative drift ratios that quantify the intensity of out-of-plane differential translation and in-plane shear distortion of masonry walls. A characteristic traditional building type of timber-laced masonry is used as a model structure for illustration of concepts. The morphology and geometry of the building correspond to a statistical sample of the actual traditional unreinforced masonry buildings (TURM) found in historical centers of many towns in the greater region of Northern Greece. The methodology is particularly useful for setting retrofit priorities and management of the collective seismic risk of historical entities.  相似文献   
10.
Predrill overpressure prediction is important for well planning and migration modeling for prospect evaluation. The Eaton (Journal of Petroleum Technology, 24 , 1972, 929) and Bowers (SPE Drilling & Completion, 10 , 1995, 89) methods are used worldwide for postdrill overpressure prediction using sonic log and predrill overpressure prediction using seismic interval velocity. In this research, these two methods were used for overpressure prediction using 3D anisotropic prestack depth‐migrated seismic interval velocity in a field of the Malay Basin. In the shallow overpressured zone, where the mechanism of overpressure is undercompaction, the onset of overpressure was predicted reasonably well using the Eaton and Bowers methods with their standard parameters (i.e., Eaton exponent 3 and Bowers loading curve) for seismic velocity. However, in the deep overpressured zone, where fluid expansion is the cause of overpressure generation, these methods underpredicted the high overpressure. In the deep overpressured zone, the overpressures were better predicted by applying a correction to the Eaton method. On the other hand, the Bowers unloading parameters for the fluid expansion mechanisms did not show any significant effect on overpressure prediction. Hence, in the study area, the Bowers method is not effective for 3D overpressure prediction using seismic velocity, whereas the Eaton method is more robust and can be used for 3D overpressure prediction from seismic velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号