首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
1.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   
2.
Y. LIU  G. CHI  K. M. BETHUNE  B. DUBÉ 《Geofluids》2011,11(3):260-279
The Red Lake mine trend, a deformation zone in the Archean Red Lake greenstone belt that hosts the world‐class Campbell‐Red Lake gold deposit, is characterized by abundant foliation‐parallel iron‐carbonate ± quartz veins with banded colloform‐crustiform structures and cockade breccias overprinted by silicification and gold mineralization. There is an apparent incompatibility between the cavity‐fill structures of the veins and breccias (typically developed at shallow crustal depths) and the upper greenschist to lower amphibole facies metamorphic conditions recorded in the host rocks (indicating relatively deep environments). This, together with the development of veins along the foliation plane, represents an enigmatic problem that may be related to the interplay between fluid dynamics and stress field. We approach this problem through systematic study of fluid inclusion planes (FIPs) in the vein minerals, including the orientations of the FIPs and the pressure–temperature conditions inferred from fluid inclusion microthermometry. We find that fluid inclusions in the main stage vein minerals (pregold mineralization ankerite and quartz and syn‐ore quartz) are predominantly carbonic without a visible aqueous phase, whereas many inclusions in the postore stage contain an aqueous phase. Most FIPs are subvertical, and many are subparallel to the foliation. High fluid pressure coupled with the high wetting angles of the water‐poor, carbonic fluids may have been responsible for the abundance of brittle deformation features. The development of subvertical FIPs is interpreted to indicate episodic switching of the maximum principal compressive stress (σ1) from subhorizontal (perpendicular to the foliation) to subvertical (parallel to the foliation) orientation. The subvertical σ1 is favorable for the formation of foliation‐parallel veins, as fractures are preferentially opened along the foliation in such a stress regime, the origin of which may be linked to the fluid source.  相似文献   
3.
Mineral deposits in the Cupp‐Coutunn/Promeszutochnaya cave system (Turkmenia, central Asia) record a phase of hydrothermal activity within a pre‐existing karstic groundwater conduit system. Hydrothermal fluids entered the caves through fault zones and deposited sulphate, sulphide and carbonate minerals under phreatic conditions. Locally, intense alteration of limestone wall rocks also occurred at this stage. Elsewhere in the region, similar faults contain economic quantities of galena and elemental sulphur mineralization. Comparisons between the Pb and S isotope compositions of minerals found in cave and ore deposits confirm the link between economic mineralization and hydrothermal activity at Cupp‐Coutunn. The predominance of sulphate mineralization in Cupp‐Coutunn implies that the fluids were more oxidized in the higher permeability zone associated with the karst aquifer. A slight increase in the δ34S of sulphate minerals and a corresponding δ34S decrease in sulphides suggest that partial isotopic equilibration occurred during oxidation. Carbonate minerals indicate that the hydrothermal fluid was enriched in 18O (δ18OSMOW ~ + 10‰) relative to meteoric groundwater and seawater. Estimated values for δ13CDIC (δ13CPDB ~ ? 13‰) are consistent with compositions expected for dissolved inorganic carbon (DIC) derived from the products of thermal decomposition of organic matter and dissolution of marine carbonate. Values derived for δ13CDIC and δ18Owater indicate that the hydrothermal fluid was of basinal brine origin, generated by extensive water–rock interaction. Following the hydrothermal phase, speleothemic minerals were precipitated under vadose conditions. Speleothemic sulphates show a bimodal sulphur isotope distribution. One group has compositions similar to the hydrothermal sulphates, whilst the second group is characterized by higher δ34S values. This latter group may either record the effects of microbial sulphate reduction, or reflect the introduction of sulphate‐rich groundwater generated by the dissolution of overlying evaporites. Oxygen isotope compositions show that calcite speleothems were precipitated from nonthermal groundwater of meteoric origin. Carbonate speleothems are relatively enriched in 13C compared to most cave deposits, but can be explained by normal speleothem‐forming processes under thin, arid‐zone soils dominated by C4 vegetation. However, the presence of sulphate speleothems, with isotopic compositions indicative of the oxidation of hydrothermal sulphide, implies that CO2 derived by reaction of limestone with sulphuric acid (‘condensation corrosion’) contributed to the formation of 13C‐enriched speleothem deposits.  相似文献   
4.
The aetiology of dental calculus formation is not fully understood, but it is known that a number of factors play a role. Generally, anthropologists have overlooked the role of other causative factors in the formation of dental calculus, attributing it almost exclusively to diet, particularly protein consumption. Anthropologists have also oversimplified the role of diet in the formation of dental calculus. This may be due to a general paucity on research on dietary effects on calculus formation, as well as a lack of integration between anthropological and non‐anthropological data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
5.
Previous experimental studies have estimated linear rates of dentine formation in modern humans to be close to 4μm day−1. In this study a method similar to that first adopted by Kawasaki, Tanaka and Ishikawa5 was used to estimate linear rates of dentine mineralization over a period of 1200 days in both the cusps and cervical regions of several permanent tooth types. All teeth were from the same individual. Rates in the cusps of teeth with the tallest crowns were estimated to be between 5 μm day−1 and 6 μm day−1. This is higher than previous estimates in permanent tooth crowns, although rates in the cusp of a first permanent molar, where cusps were less tall and cuspal dentine therefore less thick, were close to previous estimates of 4 μm day−1. Despite this variation in cuspal rates, mineralization rates were linear in all cusps studied over a long period of time. Rates in the cervical region, either close to the enamel dentine junction or to the cement dentine junction, were estimated to be between 1.3 μm day−1 and 1.5 μm day11, much slower than reported previously. Rates in the mid-portion of the dentine, in both the lateral part of the crown and in the cervical one-third of the root, rose steadily to match rates in the cuspal region, but then slowed towards the pulp chamber. These data extend the findings of previous studies on permanent human dentine. They demonstrate a wide range of mineralization rates in permanent dentine and provide a more secure basis for judging different rates in different locations of different human tooth types.  相似文献   
6.
The Baden-Württemberg shoreline of Lake Constance and the lakes and moors of Upper Swabia contain important prehistoric wetland sites. From 1979, new research has brought up not only important finds and scientific results but also increasing information about bank erosion in the lakes and desiccation in the moorlands. At Lake Constance, early attempts were made in the 1980s to protect sites threatened by erosion by covering them with geo-textile and gravel. With further protective projects the know-how improved, but crucial questions still remained: What are the best practical solutions? How about ecological compatibility? Do we have other options? The INTERREG IV 2008–2011 international project ‘Erosion and Archaeological Heritage Protection in Lake Constance and Lake Zurich’ brought deeper insights and opened the field for new experiments with protective measures. At the Federsee Moor a long-term project started in 1980 with close collaboration between nature conservation and archaeological heritage management. With archaeological stocktaking, acquisition of land, establishment of new nature reserves, exchange of landholding and hydrographic engineering, the project was completed with the help of European Union funding by LIFE+in 2013.  相似文献   
7.
Barite–(pyrite) mineralizations from the thermal springs of Wiesbaden, Rhenish Massif, Germany, have been studied to place constraints on the geochemical evolution of the hydrothermal system in space and time. The thermal springs, characterized by high total dissolved solids (TDS) contents and predominance of NaCl, ascend from aquifers at 3–4 km depth and discharge at a temperature of 65–70°C. The barite–(pyrite) mineralization is found in upflow and discharge zones of the present‐day thermal springs as well as at elevations up to 50 m above the current water table. Hence, this mineralization style constitutes a continuous record of the hydrothermal activity, linking the past evolution with the present state of this geothermal system. The sulphur isotope signatures of the mineralization indicate a continuous decrease of the δ34S of sulphate from +16.9‰ in the oldest barite to +10.1‰ in the present‐day thermal water. The δ34S values of barite closely resemble various recently active thermal springs along the southern margin of the Rhenish Massif and contrast strongly with different regional ground and mineral waters. The mineralogical and isotopic signatures, combined with calculations based on uplift rates and the regional geological history, indicate a minimum activity of the thermal spring system at Wiesbaden of about 500 000 years. This timeframe is considerably larger than conservative models, which estimate the duration of thermal spring systems in continental intraplate settings to last for several 10 000 years. The calculated equilibrium sulphur isotope temperatures of coexisting barite and pyrite range between 65 and 80°C, close to the discharge temperature of the springs, which would indicate apparent equilibrium precipitation. Kinetic modelling of the re‐equilibration of the sulphate–sulphide pair during water ascent shows that this process would require 220 Myr. Therefore, we conclude that pyrite is formed from precursor Fe monosulphide phases, which rapidly precipitate in the near‐surface environment, preserving the isotope fractionation between dissolved sulphate and sulphide established in the deep aquifer. Equilibrium modelling of water–mineral reactions shows slight supersaturation of barite at the discharge temperature. Pyrite is already strongly supersaturated at the temperatures estimated for the aquifer (110°C) and processes in the near‐surface environment are most probably related to contact of the thermal water with atmospheric oxygen, resulting in formation of oxidized intermediate sulphur species and precipitation of Fe monosulphide phases, which subsequently recrystallize to pyrite.  相似文献   
8.
Comparison of mass transfer patterns, geometry and microstructures developed within and around veins allows the interpretation of processes of fluid flow during deformation, metamorphism and mineralization. A classification of vein types based on the degree of interaction with wallrock (using petrological, geochemical or isotopic indicators) can be used to identify a range of processes, from closed system behaviour in which the vein mass is derived from local wallrock, through to open system behaviour in which the vein mass is derived externally. Microstructural characteristics, such as wallrock selvages, multiple growth events recorded by vein seams and vein crystal morphology, also help to constrain mass transfer patterns during vein formation. We present a range of processes for vein formation, including: (i) the formation of closed system fibrous veins by dissolution–precipitation creep, including varieties in which tensile failure is not required; (ii) pressure‐ or kinetically dependent closed system segregation veins in which transfer of soluble components from wallrock to vein leaves behind a residual selvage; (iii) similar vein–selvage patterning, but with mass imbalances between vein and wallrock requiring fluid advection through both interconnected fracture networks and in the surrounding permeable rock; and (iv) the proposed formation of veins by fluid ascent in mobile hydrofractures, in which isotopic or chemical disequilibrium within and around the vein suggests that the crack and fluid within it moved essentially as one. The postulate of rapid fluid and mass transfer via such mobile hydrofractures has implications for the release of volatiles from metamorphic terrains. Also, consideration of a broad range of possible vein‐forming mechanisms is highly desirable when dealing with mineral deposits found in deformed, metamorphosed rocks, because closed system veining may produce patterns that, if erroneously recognized as being open systems, could lead to false interpretations of the role of tectonic fracturing in ore genesis.  相似文献   
9.
J. Zhu  Z . Li  G. Lin  Q. Zeng  Y. Zhou  J. Yi  G. Gong  G. Chen 《Geofluids》2014,14(2):221-233
The Hetai gold deposit (HGD) is a typical altered mylonite type gold mine in a ductile shear zone in western Guangdong, China. Geomechanical simulations of the HGD were carried out in this paper to examine the importance of the dilation‐driven fluid circulation in gold mineralization. The results show that three evenly‐spaced NNE shear zones of enhanced dilation are produced in the study area. The calculated principal compressive stress in the X direction in these zones ranges between ?420 and ?650 MPa, in line with estimates of ore‐forming pressure (fluid pressure). Ore forming fluid is focused into these features, as observed in the field. The calculated differential stress decreases from 275~350 to 148~225 MPa during the formation of mylonite zones. These, together with geological structural analysis and fluid pressure measurements, indicate that the mylonitization zone can provide a place of fluid focusing and a favorable environment for gold mineralization.  相似文献   
10.
H. A. SHELDON  A. ORD 《Geofluids》2005,5(4):272-288
Mineralization of brittle fault zones is associated with sudden dilation, and the corresponding changes in porosity, permeability and fluid pressure, that occur during fault slip events. The resulting fluid pressure gradients cause fluid to flow into and along the fault until it is sealed. The volume of fluid that can pass through the deforming region depends on the degree of dilation, the porosity and permeability of the fault and wall rocks, and the rate of fault sealing. A numerical model representing a steep fault cutting through a horizontal seal is used to investigate patterns of fluid flow following a dilatant fault slip event. The model is initialized with porosity, permeability and fluid pressure representing the static mechanical state of the system immediately after such an event. Fault sealing is represented by a specified evolution of porosity, coupled to changes in permeability and fluid pressure, with the rate of porosity reduction being constrained by independent estimates of the rate of fault sealing by pressure solution. The general pattern of fluid flow predicted by the model is of initial flow into the fault from all directions, followed by upward flow driven by overpressure beneath the seal. The integrated fluid flux through the fault after a single failure event is insufficient to account for observed mineralization in faults; mineralization would require multiple fault slip events. Downward flow is predicted if the wall rocks below the seal are less permeable than those above. This phenomenon could at least partially explain the occurrence of uranium deposits in reactivated basement faults that cross an unconformity between relatively impermeable basement and overlying sedimentary rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号