首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
G. Etiope  A. Ionescu 《Geofluids》2015,15(3):438-452
Metal‐catalysed CO2 hydrogenation is considered a source of methane in serpentinized (hydrated) igneous rocks and a fundamental abiotic process germane to the origin of life. Iron, nickel, chromium and cobalt are the catalysts typically employed in hydrothermal simulation experiments to obtain methane at temperatures >200°C. However, land‐based present‐day serpentinization and abiotic gas apparently develop below 100°C, down to approximately 40–50°C. Here, we document considerable methane production in thirteen CO2 hydrogenation experiments performed in a closed dry system, from 20 to 90°C and atmospheric pressure, over 0.9–122 days, using concentrations of non‐pretreated ruthenium equivalent to those occurring in chromitites in ophiolites or igneous complexes (from 0.4 to 76 mg of Ru, equivalent to the amount occurring approximately in 0.4–760 kg of chromitite). Methane production increased with time and temperature, reaching approximately 87 mg CH4 per gram of Ru after 30 days (2.9 mgCH4/gru/day) at 90°C. At room temperature, CH4 production rate was approximately three orders of magnitude lower (0.003 mgCH4/gru/day). We report the first stable carbon and hydrogen isotope ratios of abiotic CH4 generated below 100°C. Using initial δ13CCO2 of ‐40‰, we obtained room temperature δ13CCH4 values as 13C depleted as ?142‰. With time and temperature, the C‐isotope separation between CO2 and CH4 decreased significantly and the final δ13CCH4 values approached that of initial δ13CCO2. The presence of minor amounts of C2‐C6 hydrocarbons is consistent with observations in natural settings. Comparative experiments at the same temperatures with iron and nichel catalysts did not generate CH4. Ru‐enriched chromitites could potentially generate methane at low temperatures on Earth and on other planets.  相似文献   
2.
Two UK-based researchers examine the significant recent growth in China's demand for natural gas, a fuel not long ago considered of marginal importance but now viewed as critical for the country's future economic growth. Based on a range of databases as well as industry and media reports, the authors demonstrate how rapid demand growth since 2005 has transformed China from a minor, self-sufficient gas producer to a major buyer on international gas markets. They also analyze projections for future demand growth (25 years), showing China's demand for gas will grow faster that anywhere else in the world, and explore the potential for development of China's substantial domestic gas reserves to mitigate import demand over the short to medium term. The study concludes with an assessment of China's potential impact on global gas markets over short, intermediate, and long time horizons.  相似文献   
3.
A recent advancement in petroleum geochemistry is to model fossil oil composition using microthermometric and volumetric data acquired from individual fluid inclusion analysis. Fourier transform infrared (FT‐IR) microspectroscopy can record compositional information related to gas (CH4 and CO2) and alkane contents of petroleum inclusions. In this study, a quantitative procedure for FT‐IR microspectrometry has been developed to obtain, from individual fluid inclusions, mol percentage concentrations of methane, alkanes and carbon dioxide as constraints to thermodynamic modelling. A petroleum inclusion in a sample from the Québec City Promontory nappe area was used as standard to record a reference spectrum of methane. The analytical procedure is based on the measurement of CH4/alkane and CH4/CO2 band area ratios. CH4/alkane infrared band area ratio is obtained after spectral subtraction of the reference methane spectrum. This area ratio, affected by absolute absorption intensities of methane, methyl and methylene, provides a molar CH4/alkane ratio. Methyl/methylene ratio (CH2/CH3) ratio is obtained following procedures established in previous work. CO2/CH4 concentration ratio is estimated from relative absolute absorption intensities. Application to natural inclusions from different environments shows good correlation between FT‐IR quantification and PIT (petroleum inclusion thermodynamic) modelling.  相似文献   
4.
Continuous mud gas loggings during drilling as well as offline mud gas sampling are standard procedures in oil and gas operations, where they are used to test reservoir rocks for hydrocarbons while drilling. Our research group has developed real‐time mud gas monitoring techniques for scientific drilling in non‐hydrocarbon formations mainly to sample and study the composition of crustal gases. We describe in detail this technique and provide examples for the evaluation of the continuous gas logs, which are not always easy to interpret. Hydrocarbons, helium, radon and with limitations carbon dioxide and hydrogen are the most suitable gases for the detection of fluid‐bearing horizons, shear zones, open fractures, sections of enhanced permeability and permafrost methane hydrate occurrences. Off‐site isotope studies on mud gas samples helped reveal the origin and evolution of deep‐seated crustal fluids.  相似文献   
5.
Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from ?47.6 to 29 150 mg m?2 day?1, and the diffuse CH4 output of the system has been estimated at 19 t a?1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from ?4.9 to ?38.9 pmolCH4 h?1 g?1 but could sometimes reach extremely high values (?33 000 pmolCH4 h?1 g?1). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.  相似文献   
6.
J. BREDEHOEFT 《Geofluids》2009,9(3):179-181
High fluid pressures in old geologic basins, where the mechanisms that generate high fluid pressure have ceased to operate, pose the problem of how high fluid pressures are maintained through geologic time. Recent oil and gas exploration reveals that low permeability shales, the source beds for oil and gas, contain large quantities of gas that are now being exploited in many sedimentary basins in North America. No earlier analyses of how to maintain high fluid pressure in older sedimentary basins included a shale bed as a source of adsorbed gas; this is a new conceptual element that will fundamentally change the analysis. Such a large fluid source can compensate for a low rate of bleed off in a dynamic system. If the fluid source is large enough, as the gas within these shale source beds appears to be, there will no appreciable drop in pressure accompanying a low rate of leakage from the basin for long periods. For the dynamic school of basin analysts this may provide the missing piece in the puzzle, explaining how high fluid pressures are maintained for long periods of geologic time in a crust with finite, non-zero permeability. This is a hypothesis which needs to be tested by new basin analyses.  相似文献   
7.
Geological methane, generated by microbial decay and the thermogenic breakdown of organic matter, migrates towards the surface (seabed) to be trapped in reservoirs, sequestered by gas hydrates or escape through natural gas seeps or mud volcanoes (via ebullition). The total annual geological contribution to the atmosphere is estimated as 16–40 Terragrammes (Tg) methane; much of this natural flux is ‘fossil’ in origin. Emissions are affected by surface conditions (particularly the extent of ice sheets and permafrost), eustatic sea‐level and ocean bottom‐water temperatures. However, the different reservoirs and pathways are affected in different ways. Consequently, geological sources provide both positive and negative feedback to global warming and global cooling. Gas hydrates are not the only geological contributors to feedback. It is suggested that, together, these geological sources and reservoirs influence the direction and speed of global climate change, and constrain the extremes of climate.  相似文献   
8.
Abiotic methane (CH4) and hydrogen (H2) produced after hydration of mafic/ultramafic rocks represent energy sources for microbes that may thrive in the deep subsurface regions of Earth and possibly on other planets. While H2 is a direct product of serpentinization, CH4 can form via Fischer–Tropsch Type (FTT) reactions (carbon reduction) that, due to potential H2 migration, can be spatially and temporally detached from serpentinization. We tested an alternative process hypothesized by some scholars, in which CO2 can be reduced through dunite hydration without initially added H2, implying that CH4 can form in the same serpentinized fluid–rock system. The experiment used natural dunite sand (Forsterite 92), CO2 with δ13C ~ ?25‰ (VPDB), and a 1 mm dissolved SiO2 solution mixed in 30 glass bottles (118 mL) stored for up to 8 months at low temperature (50°C) to simulate land‐based serpentinization systems. In addition, 30 control bottles without olivine were used as blanks. Trivial amounts of CH4 (orders of 0.2–0.9 ppmv) were detected in both samples and blanks, likely representing analytical noise; essentially, no significant amount of CH4 formed under the experimental conditions used in this work. Low amounts of H2 (~2.55 ± 1.39 ppmv) were generated, with production yields that were one order of magnitude lower than in previously published experiments. Moderate concentrations of SiO2 appeared to hinder low‐temperature H2 production. Our experiment confirms that the low‐temperature reduction of CO2 into CH4 through direct olivine hydration, without initial H2, is sluggish and not straightforward, which is consistent with previous studies. The presence of substantial amounts of H2, as well as suitable metal catalysts, appears to be essential in the low‐temperature production of abiotic CH4, as observed in published FTT experiments.  相似文献   
9.
Spatial variations in the salinity of pore waters in sedimentary basins can provide important insight into basin-scale hydrogeologic processes. Although there have been numerous studies of brine seeps in the deep water Gulf of Mexico, much less is known about porewater salinities in the vast areas between seeps. A study has been made of spatial variation in pore water salinities in sediments in an approximately 500 km by 200 km area of the northern deep water (water depth >500 m) Gulf of Mexico sedimentary basin (GOM) to provide insight into pathways and mechanisms of solute transport in this portion of the basin. A second objective was to document salinities in the upper 500 m of the sedimentary section, the approximate depth to which methane hydrates, a potential future energy resource, may be stable. Elevated salinities would reduce the P – T stability range of hydrates. Salinities were calculated from borehole logs using a dual electrical conductivity model. Even though much of the northern GOM is underlain by allochthonous salt most of the undisturbed shallow sedimentary section has not been permeated by hypersaline waters. These waters are limited to areas near brine seeps. Hypersaline waters having salinities in excess of 100 g l−1 become more common at subseafloor depths of 2 km and greater. A field study at Green Canyon 65 and published numerical simulations of fluid flow above tabular salt bodies suggest that brines produced by salt dissolution migrate laterally and pond above salt and/or within minibasins and that the dominant mechanism of vertical solute transport is a combination of compaction-driven advection and diffusion, not large-scale thermohaline overturn. Superimposed on this diffuse upward flux of dissolved salt is the more focused and localized expulsion of saline fluids up faults.  相似文献   
10.
This study focuses on the mechanics of methane bubble phase behavior in the gas hydrate stability zone. The transformation of deep‐water methane bubbles into solid hydrate was investigated in Lake Baikal in situ. After being released from the lake bottom, methane bubbles were caught by different traps with transparent walls. When bubbles entered the internal spaces of the traps, the bubbles could be transformed into two different solid hydrate structures depending on the ambient conditions. The first structure was hydrate granular matter consisting of solid fragments with sizes on the order of 1 mm. The second structure was a highly porous solid foam consisting of solid bubbles with sizes on the order of 5 mm. The granular matter did not change as it was brought up to the top border of the gas hydrate stability zone, whereas in the solid foam, free methane rapidly exsolved from the sample during depressurization. We conclude that the decrease in depth and the decrease in the bubble flux rate were key factors in the formation of the hydrate granular matter, whereas the increase in the depth of bubble sampling and the increase in the bubble flux rate facilitated the conversion of bubbles into a highly porous solid hydrate foam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号