首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2023年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Haig, D.W., October 2017. Permian (Kungurian) Foraminifera from Western Australia described by Walter Parr in 1942: reassessment and additions. Alcheringa 42, 37–66. ISSN 0311-5518.

Exceptionally well-preserved siliceous agglutinated Foraminifera originally recorded by Walter Parr in 1942 are redescribed and illustrated by rendered multifocal reflected-light images. Significant new observations are made on wall texture and apertural morphology. The specimens are from the Quinnanie Shale and lower Wandagee Formation in the Merlinleigh Sub-basin of the Southern Carnarvon Basin, a marginal rift that splayed from the East Gondwana interior rift. During the Early Permian, a restricted shallow sea inundated the rift. The formations are part of sequence III of the Byro Group and belong within the Kungurian Stage (Cisuralian, Lower Permian). Of the 14 agglutinated species described by Parr, six are retained under their original names, viz., Hyperammina coleyi Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], H. rudis Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], Ammodiscus nitidus Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], A. wandageeensis Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], Tolypammina undulata Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar] and Reophax tricameratus Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]; one is transferred to a different species, viz., Thurammina texana Cushman &; Waters, 1928a Cushman, J.A. &; Waters, J.A., 1928a. Some Foraminifera from the Pennsylvanian and Permian of Texas. Contributions from the Cushman Laboratory for Foraminiferal Research 4, 3155. [Google Scholar]; six are placed with other genera, viz., Thuramminoides pusilla (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Teichertina teicherti (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Sansabaina acicula (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Tolypammina? adhaerens (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Kunklerina subasper (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Trochamminopsis subobtusa (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]); and a species of Ammobaculites Cushman, 1910 Cushman, J.A., 1910. A monograph of the Foraminifera of the North Pacific Ocean. Part 1. Astrorhizidae and Lituolidae. United States National Museum, Bulletin 71(1), 134 pp. [Google Scholar] identified by Parr is now left in open nomenclature. From Parr's material, eight additional species are described: two new species, viz., Hyperammina parri sp. nov. and Gaudryinopsis raggatti sp. nov.; rare representatives of Aaptotoichus quinnaniensis Haig, 2003 Haig, D.W., 2003. Palaeobathymetric zonation of foraminifera from lower Permian shale deposits of a high-latitude southern interior sea. Marine Micropaleontology 49, 317334. 10.1016/S0377-8398(03)00051-3[Crossref], [Web of Science ®] [Google Scholar]; and very rare species of Lagenammina Rhumbler, 1911 Rhumbler, L., 1911. Die Foraminiferen (Thalamophoren) der Plankton-Expedition, Erster Teil, Die allgemeinen Organizationsverhaltnisse der Foraminiferen. Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, Kiel u. Leipzig, 3L.c. (1909), 1331. [Google Scholar], Giraliarella Crespin, 1958 Crespin, I., 1958. Permian foraminifera of Australia. Bureau Mineral Resources, Geology and Geophysics, Bulletin 48, 1207. [Google Scholar], Glomospira Rzehak, 1885 Rzehak, A., 1885. Bemerkungen über einige Foraminiferen der Oligocän Formation. Verhandlungen des Naturforschenden Vereins in Brünn 1884(23), 123129. [Google Scholar], Hormosinella Shchedrina, 1969 Shchedrina, Z.G., 1969. O nekotorykh izmeneniyakh v sisteme semeystv Astrorhizidae i Reophacidae (Foraminifera). Voprosy Mikropaleontologii 11, 157170. [Google Scholar], and Reophax Denys de Montfort, 1808 Denys de Montfort, P., 1808. Conchyliologie Systématique et Classification Méthodique des Coquilles, Volume 1. F. Schoell, Paris, 409. 10.5962/bhl.title.10571[Crossref] [Google Scholar], all of which are left in open nomenclature. Hyperammina rudis is the type species of Hyperamminita Crespin, 1958 Crespin, I., 1958. Permian foraminifera of Australia. Bureau Mineral Resources, Geology and Geophysics, Bulletin 48, 1207. [Google Scholar], a genus now considered a junior subjective synonym of Hyperammina Brady, 1878 Brady, H.B., 1878. On the reticularian and radiolarian Rhizopoda (Foraminifera and Polycystina) of the North Polar Expedition of 1875–76. Annals and Magazine of Natural History, ser. 1(6), 425440. 10.1080/00222937808682361[Taylor &; Francis Online] [Google Scholar]. Thuramminoides pusilla is considered a senior subjective synonym of T. sphaeroidalis Plummer, 1945 Plummer, H.J., 1945. Smaller Foraminifera in the Marble Falls, Smithwick, and Lower Strawn strata around the Llano Uplift in Texas. The University of Texas, Publication 4401, 209271. [Google Scholar], the type species of Thuramminoides Plummer, 1945 Plummer, H.J., 1945. Smaller Foraminifera in the Marble Falls, Smithwick, and Lower Strawn strata around the Llano Uplift in Texas. The University of Texas, Publication 4401, 209271. [Google Scholar]. Imagery is presented confirming that the simple cylindrical canals through the wall of Teichertia teicherti differ from the branching canals in Crithionina rotundata Cushman, 1910 Cushman, J.A., 1910. A monograph of the Foraminifera of the North Pacific Ocean. Part 1. Astrorhizidae and Lituolidae. United States National Museum, Bulletin 71(1), 134 pp. [Google Scholar], type species of Oryctoderma Loeblich &; Tappan, 1961 Loeblich, A.R. &; Tappan, H., 1961. Remarks on the systematics of the Sarkodina (Protozoa), renamed homonyms and new and validated genera. Proceedings of the Biological Society of Washington 74, 213234. [Google Scholar]. The collection contains some of the earliest representatives of the revised family Verneuilinoididae Suleymanov, 1973 Suleymanov, I.S., 1973. Nekotorye voprosy sistematiki semeystva Verneuilinidae Cushman 1927 v svyazi s usloviyami obitaniya. Dokladari Uzbekiston SSR. Fanlar Akademiyasining, Tashkent 1973, 3536. [Google Scholar], herein elevated from subfamily rank, and considered to include Pennsylvanian–Cisuralian representatives of Mooreinella Cushman &; Waters, 1928a Cushman, J.A. &; Waters, J.A., 1928a. Some Foraminifera from the Pennsylvanian and Permian of Texas. Contributions from the Cushman Laboratory for Foraminiferal Research 4, 3155. [Google Scholar], Aaptotoichus Loeblich &; Tappan, 1982 Loeblich, A.R. &; Tappan, H., 1982. A revision of mid-Cretaceous textularian foraminifers from Texas. Journal of Micropalaeontology 1, 5569. 10.1144/jm.1.1.55[Crossref] [Google Scholar], Digitina Crespin &; Parr, 1941 Crespin, I. &; Parr, W.J., 1941. Arenaceous Foraminifera from the Permian rocks of New South Wales. Journal and Proceedings of the Royal Society of New South Wales 74, 300311. [Google Scholar], Gaudryinopsis Podobina, 1975 Podobina, V.M., 1975. Foraminifery Verkhnego Mela i Paleogena zapadno-Sibirskoy nizmennosti, ikh znachenie dlya stratigrafii. Tomsk University Press, Tomsk, 264. [Google Scholar], Caronia Brönnimann, Whittaker &; Zaninetti, 1992 Brönnimann, P., Whittaker, J.E. &; Zaninetti, L., 1992. Brackish water foraminifera from mangrove sediments of southwestern Viti Levu, Fiji Island, Southwest Pacific. Revue de Paléobiologie 11, 1365. [Google Scholar] (=Palustrella Brönnimann, Whittaker &; Zaninetti, 1992 Brönnimann, P., Whittaker, J.E. &; Zaninetti, L., 1992. Brackish water foraminifera from mangrove sediments of southwestern Viti Levu, Fiji Island, Southwest Pacific. Revue de Paléobiologie 11, 1365. [Google Scholar]) and Verneuilinoides Loeblich &; Tappan, 1949 Loeblich, A.R. &; Tappan, H., 1949. New Kansas Lower Cretaceous Foraminifera. Journal of the Washington Academy of Sciences 39, 9092. [Google Scholar].

David W. Haig [] Centre for Energy Geoscience, School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.  相似文献   
2.
M. A. Simms  G. Garven 《Geofluids》2004,4(2):109-130
Thermal convection has the potential to be a significant and widespread mechanism of fluid flow, mass transport, and heat transport in rift and other extensional basins. Based on numerical simulation results, large‐scale convection can occur on the scale of the basin thickness, depending on the Rayleigh number for the basin. Our analysis indicates that for syn‐rift and early post‐rift settings with a basin thickness of 5 km, thermal convection can occur for basal heat flows ranging from 80 to 150 mW m?2, when the vertical hydraulic conductivity is on the order of 1.5 m year?1 and lower. The convection cells have characteristic wavelengths and flow patterns depending on the thermal and hydraulic boundary conditions. Steeply dipping extensional faults can provide pathways for vertical fluid flow across large thicknesses of basin sediments and can modify the dynamics of thermal convection. The presence of faults perturbs the thermal convective flow pattern and can constrain the size and locations of convection cells. Depending on the spacing of the faults and the hydraulic properties of the faults and basin sediments, the convection cells can be spatially organized to align with adjacent faults. A fault‐bounded cell occurs when one convection cell is constrained to occupy a fault block so that the up‐flow zone converges into one fault zone and the down‐flow zone is centred on the adjacent fault. A fault‐bounded cell pair occurs when two convection cells occupy a fault block with the up‐flow zone located between the faults and the down‐flow zones centred on the adjacent faults or with the reverse pattern of flow. Fault‐bounded cells and cell pairs can be referred to collectively as fault‐bounded convective flow. The flow paths in fault‐bounded convective flow can be lengthened significantly with respect to those of convection cells unperturbed by the presence of faults. The cell pattern and sense of circulation depend on the fault spacing, sediment and fault permeabilities, lithologic heterogeneity, and the basal heat flow. The presence of fault zones also extends the range of conditions for which thermal convection can occur to basin settings with Rayleigh numbers below the critical value for large‐scale convection to occur in a basin without faults. The widespread potential for the occurrence of thermal convection suggests that it may play a role in controlling geological processes in rift basins including the acquisition and deposition of metals by basin fluids, the distribution of diagenetic processes, the temperature field and heat flow, petroleum generation and migration, and the geochemical evolution of basin fluids. Fault‐bounded cells and cell pairs can focus mass and heat transport from longer flow paths into fault zones, and their discharge zones are a particularly favourable setting for the formation of sediment‐hosted ore deposits near the sea floor.  相似文献   
3.
Taboada, A.C., Mory, A.J., Shi, G.R., Haig, D.W. & Pinilla, M.K., 12.11.2014. An Early Permian brachiopod–gastropod fauna from the Calytrix Formation, Barbwire Terrace, Canning Basin, Western Australia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

A small brachiopod–gastropod fauna from a core close to the base of the Calytrix Formation within the Grant Group includes the brachiopods Altiplecus decipiens (Hosking), Myodelthyrium dickinsi (Thomas), Brachythyrinella narsarhensis (Reed), Neochonetes (Sommeriella) obrieni Archbold, Tivertonia barbwirensis sp. nov. and the gastropod Peruvispira canningensis sp. nov. The fauna has affinities with that of the late Sakmarian?early Artinskian Nura Nura Member directly overlying the Grant Group in other parts of the basin but, as with all lower Cisuralian (and Pennsylvanian) glacial strata in Western Australia, its precise age remains poorly constrained, especially in terms of correlation to international stages. Although the Calytrix fauna lies within the Pseudoreticulatispora confluens Palynozone, the only real constraint on its age (and that of the associated glacially influenced strata) is from Sakmarian (Sterlitamakian) and stratigraphically younger faunas. A brief review of radiometric ages from correlative strata elsewhere in Gondwana shows that those ages need to be updated. The presence of Asselian strata and the position of the Carboniferous?Permian boundary remain unclear in Western Australia.

Arturo César Taboada [], CONICET-Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB), Facultad de Ciencias Naturales, Sede Esquel, Universidad Nacional de la Patagonia ‘San Juan Bosco’, Edificio de Aulas, Ruta Nacional 259, km. 16,5, Esquel U9200, Chubut, Argentina; Arthur Mory [], Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Guang R. Shi [], School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; David W. Haig [], School of Earth and Environment (M004), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; María Karina Pinilla [], División Paleozoología Invertebrados, Museo de Ciencias Naturales de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina.  相似文献   
4.
The skeletal remains of a child aged 2.5–3.5 years, recovered during archaeological excavations at the churchyard of St Martin's Church, Birmingham, UK, were examined using gross observation, radiography and scanning electron microscopy. Lesions suggestive of the presence of rickets and of secondary hyperparathyroidism were found. This appears to be a first report of secondary hyperparathyroidism in response to rickets in a palaeopathological specimen. The potential of microscopic examination of bone for interpreting disease processes is emphasised. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
Bioarchaeologists often use linear enamel hypoplasias (LEH) as a proxy for systemic physiological stress in prehistoric populations. Increased incidences of LEH have been observed in many cases associated with rapid social or environmental changes, such as with the Neolithic transition and agricultural intensification. Still, there have yet to be studies published of LEH incidence among living peoples in the process of transitioning from foraging to a farming economy. It is important to document LEH occurrence in living groups with known subsistence strategies to better contextualise interpretations of bioarchaeological populations. Here, we present LEH data for a sample of the Hadza of Tanzania. We compare LEH incidence and frequency on the permanent anterior teeth of individuals who spent their infancy and early childhood (i) in the bush consuming wild foods; (ii) in the village with a weaning diet dominated by domestic cereals; and (iii) transitory, dividing their time between the bush and village. Our results demonstrate that Hadza living in the bush during the period of tooth formation less frequently have LEH on these teeth, and have fewer of them on average, than do villagers. This is particularly so for the comparison of men. The transient group is intermediate in LEH incidence, although not significantly different from the bush and village samples. A lower LEH frequency in the bush Hadza is consistent with a diet that meets nutrient requirements of tooth formation, but higher incidence in the village sample suggests interruption of enamel secretion, most likely due to malnutrition. Such studies provide valuable context with which to interpret and understand bioarchaeological evidence, and to track effects of sedentisation on the biology of modern foragers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
Gout is a disease caused by the abnormal accumulation of uric acid in the body, which can result in sodium urate crystals forming tophi at joints, with associated erosion of bone and cartilage. Only two examples of tophi have been reported from archaeological individuals, and the diagnosis of gout based on dry bone manifestations can be difficult. This paper presents preliminary results of a new technique to aid the diagnosis of gout in palaeopathology, namely high performance liquid chromatography (HPLC). Five archaeological skeletons with suspected gout (diagnosed using visual and radiological analysis) and three controls were analysed. Two of the gouty individuals had a white powder in their erosive lesions. HPLC showed the presence of uric acid in bone in four of the five individuals with evidence of gouty arthritis and was negative for uric acid in bone from the three controls. The white powder was also positive for uric acid. With reliance on the presence of articular erosions, cases of gout will be missed in archaeological human bone. HPLC measurement of uric acid could prove useful in the differential diagnosis of erosive arthropathy in archaeology. It may also be useful in identifying individuals with an increased body pool of uric acid, linked to conditions included in the term ‘metabolic syndrome’. As a result, HPLC uric acid measurement also has the potential to provide additional information on health and lifestyle in past communities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
7.
This paper reports the initial recording of an early riverboat wreck located in the Red River between Oklahoma and Texas. The wreck is probably the Caddo lost in 1842. The visible wreckage is described and the history of the Caddo is discussed. This is the earliest western rivers steamboat investigated by archaeologists to date.  相似文献   
8.
Benjamin Irvine 《对极》2023,55(2):458-479
Ambitions for a European “circular economy” imply waste is becoming an important “commodity frontier”. Increased recycling in Europe has been accompanied by a proliferation of informal waste work. “Southern” geographies of informal recyclers provide resources for interpreting this phenomenon but studies of a commodity frontier in urban waste have tended to focus on moments when informal waste workers are displaced by capital intensive waste management systems. I draw on concepts in world-ecology and materialist ecofeminism to explore the proliferation of informal waste workers in Barcelona and the way their (re)production produces “Metabolic Value”. Informal waste work is shown to emerge and persist as part of a commodity frontier process—where the appropriation of unpaid work from non-commodified spaces is the hallmark of how capitalism secures “Cheap Nature”. The study suggests that, rather than internalising ecological costs, recycling often rests on the appropriation of value from uncommodified spaces.  相似文献   
9.
Katja Neves 《对极》2010,42(3):719-741
Abstract: This paper engages critically with the monolithic presentation of whale watching as the antithesis of whale hunting. It begins by tackling the reductive and homogenized portrayal of whale watching in mainstream environmental discourse as diametrically opposite to whale hunting and argues that such discourse likely obscures the existence of bad whale watching conduct. Next it reveals significant continuities between whale hunting and whale watching, especially the fetishized commoditization of cetaceans and the creation of a metabolic rift in human–cetacean relations. In both contexts nature is produced first and foremost according to capitalist principles, which problematizes the pervasive assumption that whale watching correlates primarily and directly with conservation. Finally, the paper examines two different business models and the production of distinct ecological and community development effects. The results of the comparison justify the need for more critical and effective environmental non‐governmental organization approaches to cetourism vis‐à‐vis nature conservation goals.  相似文献   
10.
The skeletal remains of a child aged 13–15 years, recovered from Wharram Percy, England, and dating from AD 960–1700, were examined using gross observation, radiography and scanning electron microscopy. Lesions suggestive of renal osteodystrophy were found. Palaeopathological recognition of renal disease has hitherto relied upon the identification of soft tissue lesions or the presence of urinary calculi. This appears to be the first palaeopathological identification of renal insufficiency on the basis of skeletal changes alone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号