首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  2016年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Major corrosion has been found at depth in carbonate hydrocarbon reservoirs from different geologic provinces. Fluid inclusion microthermometry and stable isotopic compositions of carbonate cements, predating major corrosion, constrain the interpretation of the evolution of parental fluids during progressive burial and prior to the major corrosion event. Post‐major corrosion mineral paragenesis includes pyrite (‐marcasite), anhydrite, kaolinite (dickite) and fluorite. Although the post‐corrosion mineral paragenesis represents minor volumes of rock, it may provide valuable insights into the post‐corrosion brine chemistry. Using reactive transport numerical models, the roles of cooling and/or mixing of brines on corrosion have been evaluated as controls for dolomitization, deep burial corrosion and precipitation of the post‐corrosion mineral paragenesis. Modelling results show that cooling of deep‐seated fluids moving upward along a fracture may cause minor calcite dissolution and porosity generation. Significant dolomitization along a fracture zone and nearby host‐rock only occurs when deep‐seated fluids have high salinities (4 mol Cl kg?1 of solution) and Darcian flow rates are relatively high (1 m3 m?2 year?1). Only minor volumes of quartz and fluorite precipitate in the newly formed porosity. Moreover, modelling results cannot reproduce the authigenic precipitation of kaolinite (dickite at high temperatures) by cooling. As an alternative to cooling as a cause of corrosion, mixing between two brines of different compositions and salinities is represented by two main cases. One case consists of the flow up along a fracture of deep‐seated fluids with higher salinities than the fluid in the wall rock. Dolomite does not precipitate at a fracture zone. Nevertheless, minor volumes of dolomite are formed away from the fracture. The post‐corrosion mineral paragenesis can be partly reproduced, and the results are comparable to those obtained from cooling calculations. Minor volumes of quartz and fluorite are formed, and kaolinite‐dickite does not precipitate. The major outputs of this scenario are calcite dissolution and slight net increase in porosity. A second case corresponds to the mixing of low salinity deep‐seated fluids, flowing up along fractures, with high salinity brines within the wall rock. Calculations predict major dissolution of calcite and precipitation of dolomite. The post‐corrosion mineral paragenesis can be reproduced. High volumes of quartz, fluorite and kaolinite‐dickite precipitate and may even completely occlude newly formed porosity.  相似文献   
2.
The flow of water along discontinuities, such as fractures or faults, is of paramount importance in understanding the hydrogeology of many geological settings. An experimental study was undertaken comprising two experiments on a 30° slip‐plane filled with kaolinite or Ball Clay gouge using a bespoke Angled Shear Rig (ASR). The gouge was initially loaded in equal step changes in vertical stress, followed by unloading of the sample in similar equal steps. This was followed by reloading to a new maximum stress, followed by unloading; the test history was therefore load‐unload‐reload‐unload (LURU). The transmissivity of the kaolinite and Ball Clay gouge showed a power‐law relationship with vertical stress. The LURU history showed considerable hysteresis, with flow effectively unchanged during unloading, even when vertical stress was close to zero. Reloading resulted in flow similar to that seen during unloading suggesting that the unloading‐reloading path is similar to the rebound‐reconsolidation line in classic soil mechanics. These observations show the importance of stress history on fracture flow; consideration of just the current stress acting upon a fracture may result in inaccuracies of predicted hydraulic flow. Once a new stress maximum was achieved the transmissivity of the fracture continued to reduce. No significant variation was seen in the flow response of kaolinite and Ball Clay gouge suggesting that the inclusion of illite and quartz did not have a significant influence on the form of the relationship between stress and flow, i.e. both described by a power‐law.  相似文献   
3.
The Ixtacamaxtitlán hydrothermal deposit is made up of a succession, from bottom to top, of: (1) a porphyritic subvolcanic body, crosscut by quartz veins, and a stockwork with subordinate sulfides (pyrite and chalcopyrite), showing propylitic alteration haloes overprinting a previous potassic alteration event (biotitization); (2) an overlying, kaolinized lithic‐rich rhyolitic tuff; and (3) a layered opal deposit with preserved sedimentary structures. This vertical zonation, coupled with the distribution of the alteration assemblages, lead us to the interpretation of the whole as a porphyry‐type deposit grading upwards to a barren, steam‐heated, acid‐leached, kaolinite blanket with a partially preserved silica sinter on top. Both the fluid inclusion study carried out on the veins and stockwork, and the stable isotopic analyses of the kaolinized bodies, suggest the presence of two major hydrothermal events. The older event is characterized by the occurrence of hot hypersaline fluids (up to 320°C and 36 wt% NaCl equivalents), likely of magmatic origin, closely associated with the emplacement of the underlying early Miocene porphyry‐type deposit. The later event is characterized by the presence of cooler and dilute fluids (up to 140°C and 4 wt% NaCl equivalents) and by advanced argillic alteration close to the paleosurface. The calculated isotopic composition of water in equilibrium with the kaolinitic sequence plots close to and underneath the meteoric water line, partially overlapping the Los Humeros present‐day geothermal fluids. This evidence coupled with the petrographic observations suggests that steam‐heated phreatic waters altered the lithic‐rich rhyolitic tuff. This would have occurred when acid vapors, exsolved from deeper hydrothermal fluids by boiling, reached the local paleowater table and condensed, after a sector collapse that changed the system from lithostatic to hydrostatic conditions.  相似文献   
4.
Strong feedbacks link temperature (T), hydrologic flow (H), mechanical deformation (M), and chemical alteration (C) in fractured rock. These processes are interconnected as one process affects the initiation and progress of another. Dissolution and precipitation of minerals are affected by temperature and stress, and can result in significant changes in permeability and solute transport characteristics. Understanding these couplings is important for oil, gas, and geothermal reservoir engineering, for CO2 sequestration, and for waste disposal in underground repositories and reservoirs. To experimentally investigate the interactions between THMC processes in a naturally stressed fracture, we report on heated (25°C up to 150°C) flow‐through experiments on fractured core samples of Westerly granite. These experiments examine the influence of thermally and mechanically activated dissolution of minerals on the mechanical (stress/strain) and transport (permeability) responses of fractures. The evolutions of the permeability and relative hydraulic aperture of the fracture are recorded as thermal and stress conditions' change during the experiments. Furthermore, the efflux of dissolved mineral mass is measured periodically and provides a record of the net mass removal, which is correlated with observed changes in relative hydraulic fracture aperture. During the experiments, a significant variation of the effluent fluid chemistry is observed and the fracture shows large changes in permeability to the changing conditions both in stress and in temperature. We argue that at low temperature and high stresses, mechanical crushing of the asperities and the production of gouge explain the permeability decrease although most of the permeability is recoverable as the stress is released. While at high temperature, the permeability changes are governed by mechanical deformation as well as chemical processes, in particular, we infer dissolution of minerals adjacent to the fracture and precipitation of kaolinite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号