首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The Stairway Sandstone is a 30–560 m thick succession of Middle Ordovician siliciclastic sedimentary rocks within the Amadeus Basin of central Australia, deposited in the epeiric Larapintine Sea of northern peri-Gondwana. The Stairway Sandstone is significant as one of only two known Gondwanan successions to yield articulated arandaspid (pteraspidomorph agnathan) fish. Herein we use the ichnology of the Stairway Sandstone to reveal insights into the shallow marine habitat of these early vertebrates, and compare it with that of other known pteraspidomorph-bearing localities from across Gondwana. The Stairway Sandstone contains a diverse Ordovician ichnofauna including 22 ichnotaxa of Arenicolites, Arthrophycus, Asterosoma, Cruziana, Didymaulichnus, Diplichnites, Diplocraterion, ?Gordia, Lockeia, Monocraterion, Monomorphichnus, Phycodes, Planolites, Rusophycus, Skolithos and Uchirites. These ichnofauna provide a well-preserved example of a typical Ordovician epeiric sea assemblage, recording the diverse ethologies of tracemakers in a very shallow marine environment of flashy sediment accumulation and regularly shifting sandy substrates. New conodont data refine the age of the Stairway Sandstone to the early Darriwilian, with ichnostratigraphic implications for the Cruziana rugosa group and Arthrophycus alleghaniensis.  相似文献   
2.
Several traces of biological interaction were found on penguin bones from the basal levels (Aquitanian) of the Miocene Gaiman Formation in the lower Chubut valley of the Provincia del Chubut, Argentina. The fossil-bearing beds were deposited in littoral to sublittoral environments within sediments of mostly pyroclastic origin. We interpret many traces to have been produced by predators and/or scavengers while the penguins were still in a breeding area. Many bones show cracking marks due to aerial exposure. The material is disarticulated as is usual in recent breeding areas. Potential predators were coeval terrestrial mammals, most probably marsupial carnivores. After a marine transgression, these bones were buried or exposed on the sea bottom where they could be colonized by algae, sponges, cnidarians, and other benthic organisms. We identified sponge borings in several bones. Other traces are interpreted to have been produced by echinoderms feeding on sponges or algae. No evidence of other invertebrate predators such as muricid or naticid gastropods, or decapods was found. Finally, other traces appear to have been generated by shark and possibly teleostean vertebrates feeding on epibionts. One coracoid is interpreted to have been marked by a shark that is common in the Gaiman Formation, the carcharhiniform Galeocerdo aduncus. From an ethological (Seilacherian) classification, traces on bones from the Gaiman Formation include Domichnia (sponge perforations), Praedichnia (terrestrial marsupials, sharks, teleosteans) and Pasichnia (echinoderms). Remarkably, remains of marine organisms with skeletons made of calcium carbonate are very poorly preserved in the Gaiman Formation. Only large oysters, sparse shell fragments, skeletal moulds, and bioturbation is evident. The fossil assemblage is mainly composed of phosphatic (e.g. teeth, bones, crustacean parts) and siliceous (sponge spicules, diatoms) remains.  相似文献   
3.
Thulborn, R.A., 2013. Lark Quarry revisited: a critique of methods used to identify a large dinosaurian track-maker in the Winton Formation (Albian–Cenomanian), western Queensland, Australia. Alcheringa, http://dx.doi.org/10.1080/03115518.2013.748482

A remarkable assemblage of dinosaur tracks in the Winton Formation (Albian–Cenomanian) at Lark Quarry, a site in western Queensland, Australia, has long been regarded as evidence of a dinosaurian stampede. However, one recently published study has claimed that existing interpretation of Lark Quarry is incorrect because the largest track-maker at the site was misidentified and could not have played a pivotal role in precipitating a stampede. That recent study has identified the largest track-maker as an ornithopod (bipedal plant-eating dinosaur) similar or identical to Muttaburrasaurus and not, as formerly supposed, a theropod (predaceous dinosaur) resembling Allosaurus. Those iconoclastic claims are examined here and are shown to be groundless: they are based partly on misconceptions and partly on fabricated data that have been assessed uncritically using quantitative measures of questionable significance. Such ill-founded claims do not reveal any substantial flaw in the existing interpretation of the Lark Quarry dinosaur tracks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号