首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   30篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   30篇
  2015年   11篇
  2014年   18篇
  2013年   19篇
  2012年   8篇
  2011年   14篇
  2010年   17篇
  2009年   19篇
  2008年   9篇
  2007年   17篇
  2006年   17篇
  2005年   11篇
  2004年   13篇
  2003年   19篇
  2002年   9篇
  2001年   13篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1982年   1篇
排序方式: 共有265条查询结果,搜索用时 31 毫秒
1.
手机信令数据所代表的人流联系与国内外研究常用的企业关联数据在测度城市关联存在何种差异,尚缺乏明确的研究。本文以江西省北部地区为研究对象,分别以手机信令数据、企业关联数据测度城市关联,比较了两种城市关联与城市之间空间距离、人口规模的关系,比较了两种城市关联网络的层级、结构、腹地。主要研究发现:人流联系不仅集中在城市周边地区,而且集中于较高等级城市之间;经济联系则主要集中在较高等级城市之间。人流联系、经济联系受到城市人口规模影响均较小。人流联系显著地符合幂函数空间衰减规律。手机信令数据和企业关联数据是两种不同的城市关联数据,但可互为补充,较为全面地反映城市关联。  相似文献   
2.
Accurate simulation of multiphase flow in fractured porous media remains a challenge. An important problem is the representation of the discontinuous or near discontinuous behaviour of saturation in real geological formations. In the classical continuum approach, a refined mesh is required at the interface between fracture and porous media to capture the steep gradients in saturation and saturation‐dependent transport properties. This dramatically increases the computational load when large numbers of fractures are present in the numerical model. A discontinuous finite element method is reported here to model flow in fractured porous media. The governing multiphase porous media flow equations are solved in the adaptive mesh computational fluid dynamics code IC‐FERST on unstructured meshes. The method is based on a mixed control volume – discontinuous finite element formulation. This is combined with the PN+1DG‐PNDG element pair, which has discontinuous (order N+1) representation for velocity and discontinuous (order N) representation for pressure. A number of test cases are used to evaluate the method's ability to model fracture flow. The first is used to verify the performance of the element pair on structured and unstructured meshes of different resolution. Multiphase flow is then modelled in a range of idealised and simple fracture patterns. Solutions with sharp saturation fronts and computational economy in terms of mesh size are illustrated.  相似文献   
3.
L. Jiang  W. Pan  C. Cai  L. Jia  L. Pan  T. Wang  H. Li  S. Chen  Y. Chen 《Geofluids》2015,15(3):483-498
Permian hydrothermal activity in the Tarim Basin may have been responsible for the invasion of hot brines into Ordovician carbonate reservoirs. Studies have been undertaken to explain the origin and geochemical characteristics of the diagenetic fluid present during this hydrothermal event although there is no consensus on it. We present a genetic model resulting from the study of δ13C, δ18O, δ34S, and 87Sr/86Sr isotope values and fluid inclusions (FIs) from fracture‐ and vug‐filling calcite, saddle dolomite, fluorite, barite, quartz, and anhydrite from Ordovician outcrops in northwest (NW) Tarim Basin and subsurface cores in Central Tarim Basin. The presence of hydrothermal fluid was confirmed by minerals with fluid inclusion homogenization temperatures being >10°C higher than the paleo‐formation burial temperatures both in the NW Tarim and in the Central Tarim areas. The mixing of hot (>200°C), high‐salinity (>24 wt% NaCl), 87Sr‐rich (up to 0.7104) hydrothermal fluid with cool (60–100°C), low‐salinity (0 to 3.5 wt% NaCl), also 87Sr‐rich (up to 0.7010) meteoric water in the Ordovician unit was supported by the salinity of fluid inclusions, and δ13C, δ18O, and 87Sr/86Sr isotopic values of the diagenetic minerals. Up‐migrated hydrothermal fluids from the deeper Cambrian strata may have contributed to the hot brine with high sulfate concentrations which promoted thermochemical sulfate reduction (TSR) in the Ordovician, resulting in the formation of 12C‐rich (δ13C as low as ?13.8‰) calcite and 34S‐rich (δ34S values from 21.4‰ to 29.7‰) H2S, pyrite, and elemental sulfur. Hydrothermal fluid mixing with fresh water in Ordovician strata in Tarim Basin was facilitated by deep‐seated faults and up‐reaching faults due to the pervasive Permian magmatic activity. Collectively, fluid mixing, hydrothermal dolomitization, TSR, and faulting may have locally dissolved the host carbonates and increased the reservoir porosity and permeability, which has significant implications for hydrocarbon exploration.  相似文献   
4.
Granitoid (pegmatite and aplite) veins in metamorphic rocks and intrusive syenites of central Dronning Maud Land, Antarctica, are flanked by conspicuous light‐coloured alteration halos, which represent the damage zone of fracture propagation. The damage zone is characterized by a high density of sealed or healed microcracks, about 1 order of magnitude above background. Fluid inclusions along healed microcracks in quartz of both pegmatite and alteration halos are inspected by optical and scanning electron microscopy, and their composition is analysed by microthermometry and quadrupole mass spectrometry. The similar inclusion record in the granitoid vein and in the damaged host rock indicates the derivation of the fluids from the hydrous melt phase. The aqueous inclusions bear abundant daughter crystals, mainly silicates, and may represent a hydrous melt. The volatile composition is variable in the system H2O–CO2, with mostly subordinate amounts of N2. Phase separation with partitioning of CO2 into the fluid phase coexisting with the hydrous melt, and possibly immiscibility in the subsolidus range, govern fluid evolution during cooling. The variable CO2/N2 ratio suggests mixing with fluids from an external source in the host rock and vigorous circulation at an early stage of high transient permeability. Experiments have shown that healing of microcracks at high temperatures is a matter of hours to weeks, hence similar in time scale to the cooling of the cm‐ to dm‐thick granitoid veins. In this case, rapid cooling and concomitant crack healing in a system undergoing phase separation causes a broad compositional variability of the inclusions due to necking down, and the underpressure developing in closed compartments precludes a meaningful thermobarometric interpretation.  相似文献   
5.
The generation of computational meshes of complex geological objects is a challenge: their shape needs to be retained, resolution has to adapt to local detail, and variations of material properties in the objects have to be represented. Also mesh refinement and adaptation must be sufficient to resolve variations in the computed variable(s). Here, we present an unstructured hybrid finite element, node‐centred finite‐volume discretization suitable for solving fluid flow, reactive transport, and mechanical partial differential equations on a complex geometry with inhomogeneous material domains. We show that resulting meshes accurately capture free‐form material interfaces as defined by non‐uniform rational B‐spline curves and surfaces. The mesh discretization error is analysed for the elliptic pressure equation and an error metric is introduced to guide mesh refinement. Finite elements and finite volumes are represented in parametric space and integrations are conducted numerically. Subsequently, integral properties are mapped to physical space using Jacobian transformations. This method even retains its validity when the mesh is deformed. The resulting generic formulation is demonstrated for a transport calculation performed on a complex discrete fracture model.  相似文献   
6.
A polyphasic tectonic‐fluid system of a fault that involves crystalline and carbonate rocks (Hospital fault, Barcelona Plain) has been inferred from regional to thin section scale observations combined with geochemical analyses. Cathodoluminescence, microprobe analyses and stable isotopy in fracture‐related cements record the circulation of successive alternations of hydrothermal and low‐temperature meteoric fluids linked with three main regional tectonic events. The first event corresponds to the Mesozoic extension, which had two rifting stages, and it is characterized by the independent tectonic activity of two fault segments, namely southern and northern Hospital fault segments. During the Late Permian‐Middle Jurassic rifting, these segments controlled the thickness and distribution of the Triassic sediments. Also, dolomitization was produced in an early stage by Triassic seawater at shallow conditions. During increasing burial, formation of fractures and their dolomite‐related cements took place. Fault activity during the Middle Jurassic–Late Cretaceous rifting was localized in the southern segment, and it was characterized by hydrothermal brines, with temperatures over 180°C, which ascended through this fault segment precipitating quartz, chlorite, and calcite. The second event corresponds to the Paleogene compression (Chattian), which produced exhumation, folding and erosion, favouring the percolation of low‐temperature meteoric fluids which produced the calcitization of the dolostones and of the dolomite cements. The third event is linked with the Neogene extension, where three stages have been identified. During the syn‐rift stage, the southern segment of the Hospital fault grew by tip propagation. In the relay zone, hydrothermal brines with temperature around 140°C upflowed. During the late postrift, the Hospital fault acted as a unique segment and deformation occurred at shallow conditions and under a low‐temperature meteoric regime. Finally, and possibly during the Messinian compression, NW‐SE strike‐slip faults offset the Hospital fault to its current configuration.  相似文献   
7.
Structure‐ and tectonic‐related gas migration into Ordovician sandstone reservoirs and its impact on diagenesis history were reconstructed in two gas fields in the Sbaa Basin, in SW Algeria. This was accomplished by petrographical observations, fluid inclusion microthermometry and stable isotope geochemistry on quartz, dickite and carbonate cements and veins. Two successive phases of quartz cementation (CQ1 and CQ2) occurred in the reservoirs. Two phase aqueous inclusions show an increase in temperatures and salinities from the first CQ1 diagenetic phase toward CQ2 in both fields. Microthermometric data on gas inclusions in quartz veins reveal the presence of an average of 92 ± 5 mole% of CH4 considering a CH4‐CO2 system, which is similar to the present‐day gas composition in the reservoirs. The presence of primary methane inclusions in early quartz overgrowths and in quartz and calcite veins suggests that hydrocarbon migration into the reservoir occurred synchronically with early quartz cementation in the sandstones located near the contact with the Silurian gas source rock at 100–140°C during the Late Carboniferous period and the late Hercynian episode fracturing at temperatures between 117 and 185°C, which increased in the NW‐direction of the basin. During the fracture filling, three main types of fluids were identified with different salinities and formation temperatures. A supplementary phase of higher fluid temperature (up to 226°C) recorded in late quartz, and calcite veins is related to a Jurassic thermal event. The occurrence of dickite cements close to the Silurian base near the main fault areas in both fields is mainly correlated with the sandstones where the early gas was charged. It implies that dickite precipitation is related to acidic influx. Late carbonate cements and veins (calcite – siderite – ankerite and strontianite) occurred at the same depths resulting from the same groundwater precipitation. The absence of methane inclusions in calcite cements result from methane flushing by saline waters.  相似文献   
8.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   
9.
X. Zhou  T. J. Burbey 《Geofluids》2014,14(2):174-188
The initiation of hydraulic fractures during fluid injection in deep formations can be either engineered or induced unintentionally. Upon injection of CO2, the pore fluids in deep formations can be changed from oil/saline water to CO2 or CO2 dominated. The type of fluid is important not only because the fluid must fracture the rock, but also because rocks saturated with different pore fluids behave differently. We investigated the influence of fluid properties on fracture propagation behavior by using the cohesive zone model in conjunction with a poroelasticity model. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Low viscosity fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison with fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation: the time at which a crack ceases opening and the later time point at which a crack ceases propagating. These times are very different for different fluids. Both fluid compressibility and viscosity influence fracture propagation, with viscosity being the more important property. Viscosity can greatly affect hydraulic conductivity and the leak‐off coefficient. This analysis assumes the in‐situ pore fluid and injected fluid are the same and the pore space is 100% saturated by that fluid at the beginning of the simulation.  相似文献   
10.
The Trèves zinc–lead deposit is one of several Mississippi Valley‐type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to ?21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur‐rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore‐forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault‐controlled and mineralogically similar MVT deposits in the Cévennes region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号