首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   12篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   10篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   9篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2001年   4篇
  1993年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
L. Jiang  W. Pan  C. Cai  L. Jia  L. Pan  T. Wang  H. Li  S. Chen  Y. Chen 《Geofluids》2015,15(3):483-498
Permian hydrothermal activity in the Tarim Basin may have been responsible for the invasion of hot brines into Ordovician carbonate reservoirs. Studies have been undertaken to explain the origin and geochemical characteristics of the diagenetic fluid present during this hydrothermal event although there is no consensus on it. We present a genetic model resulting from the study of δ13C, δ18O, δ34S, and 87Sr/86Sr isotope values and fluid inclusions (FIs) from fracture‐ and vug‐filling calcite, saddle dolomite, fluorite, barite, quartz, and anhydrite from Ordovician outcrops in northwest (NW) Tarim Basin and subsurface cores in Central Tarim Basin. The presence of hydrothermal fluid was confirmed by minerals with fluid inclusion homogenization temperatures being >10°C higher than the paleo‐formation burial temperatures both in the NW Tarim and in the Central Tarim areas. The mixing of hot (>200°C), high‐salinity (>24 wt% NaCl), 87Sr‐rich (up to 0.7104) hydrothermal fluid with cool (60–100°C), low‐salinity (0 to 3.5 wt% NaCl), also 87Sr‐rich (up to 0.7010) meteoric water in the Ordovician unit was supported by the salinity of fluid inclusions, and δ13C, δ18O, and 87Sr/86Sr isotopic values of the diagenetic minerals. Up‐migrated hydrothermal fluids from the deeper Cambrian strata may have contributed to the hot brine with high sulfate concentrations which promoted thermochemical sulfate reduction (TSR) in the Ordovician, resulting in the formation of 12C‐rich (δ13C as low as ?13.8‰) calcite and 34S‐rich (δ34S values from 21.4‰ to 29.7‰) H2S, pyrite, and elemental sulfur. Hydrothermal fluid mixing with fresh water in Ordovician strata in Tarim Basin was facilitated by deep‐seated faults and up‐reaching faults due to the pervasive Permian magmatic activity. Collectively, fluid mixing, hydrothermal dolomitization, TSR, and faulting may have locally dissolved the host carbonates and increased the reservoir porosity and permeability, which has significant implications for hydrocarbon exploration.  相似文献   
2.
Francesca Fois 《对极》2019,51(1):107-128
This paper analyses the experimental nature of alternative spaces and the affective, emotional and embodied experience their enactment generates. In so doing, it grounds the analysis on the intentional community of Damanhur (Italy), as an example of experimental spaces. Scholarship concerning intentional communities draws on utopian studies that consider them as utopian laboratories. More recently, non‐representational approaches have emphasised the processual nature of utopias, yet studies have overlooked the experimental nature of these alternative spaces. Drawing upon in‐depth ethnographic data, this paper engages with community experimentations that took place in Damanhur for residents and visitors. It illustrates how utopian enactment is experimental and thus, disordering, unsettling and creative. Moreover, I argue that experimentations are not limited to unsettling the social structure of the community and, when studying the enactment of alternative spaces, emphasis should also be on their capacity to affect the individual.  相似文献   
3.
Archaeological experiments that use modern bones to replicate past animal bone assemblages have often failed to consider the effects of environment, storage and preparation on modern bones. Often, these experiments make little mention of the conditions to which bones were subject during their storage and preparation for use in experiments. In other instances, these variables are reported but not considered as factors that contribute to the nature of the results obtained. This study considers previously reported data concerning the degradation of frozen bones (−20°C), and bones exposed to hot, dry conditions (40°C), and presents new data for bones exposed to room temperature environments (22°C) and refrigerated environments (2°C), and bones that are frozen (−20°C) and then thawed (22°C). These conditions are all relevant to understanding the nature of bone degradation and the use of bones in modern archaeological experimentation. This article also surveys a range of previously reported experiments that utilise modern bones to create analogies to the past and considers different methodological approaches and their relationship to the condition of bones at the time of their fracture and fragmentation. The longitudinal data presented in this study demonstrate differential rates of bone degradation over time in various environmental conditions. This degradation results in dramatic changes in bone fracture morphology, bone strength and utility for bone tool production. These observations have significant implications for experiments that utilise modern bones, especially when experimental data are used to create analogies to the archaeological past. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
A polyphasic tectonic‐fluid system of a fault that involves crystalline and carbonate rocks (Hospital fault, Barcelona Plain) has been inferred from regional to thin section scale observations combined with geochemical analyses. Cathodoluminescence, microprobe analyses and stable isotopy in fracture‐related cements record the circulation of successive alternations of hydrothermal and low‐temperature meteoric fluids linked with three main regional tectonic events. The first event corresponds to the Mesozoic extension, which had two rifting stages, and it is characterized by the independent tectonic activity of two fault segments, namely southern and northern Hospital fault segments. During the Late Permian‐Middle Jurassic rifting, these segments controlled the thickness and distribution of the Triassic sediments. Also, dolomitization was produced in an early stage by Triassic seawater at shallow conditions. During increasing burial, formation of fractures and their dolomite‐related cements took place. Fault activity during the Middle Jurassic–Late Cretaceous rifting was localized in the southern segment, and it was characterized by hydrothermal brines, with temperatures over 180°C, which ascended through this fault segment precipitating quartz, chlorite, and calcite. The second event corresponds to the Paleogene compression (Chattian), which produced exhumation, folding and erosion, favouring the percolation of low‐temperature meteoric fluids which produced the calcitization of the dolostones and of the dolomite cements. The third event is linked with the Neogene extension, where three stages have been identified. During the syn‐rift stage, the southern segment of the Hospital fault grew by tip propagation. In the relay zone, hydrothermal brines with temperature around 140°C upflowed. During the late postrift, the Hospital fault acted as a unique segment and deformation occurred at shallow conditions and under a low‐temperature meteoric regime. Finally, and possibly during the Messinian compression, NW‐SE strike‐slip faults offset the Hospital fault to its current configuration.  相似文献   
5.
Two‐phase flow and near‐critical phenomena are likely to enhance energy transport in high‐temperature hydrothermal systems. We present a series of two‐dimensional simulations of two‐phase flow of pure water at near‐critical conditions. The results show that at near‐critical conditions, two‐phase convection can be more efficient in transporting energy than single‐phase convection. The highest heat fluxes are attained when two‐phase heat‐pipes form near the bottom boundary, recharging the root of the upflow zone and thereby enabling the formation of broad upflow regions. When the system becomes more vapor‐dominated, it loses this ability, upflow zones become narrower and the energy efficiency drops to more moderate values.  相似文献   
6.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   
7.
The quantitative assessment of COH fluids is crucial in modeling geological processes. The composition of fluids, and in particular their H2O/CO2 ratio, can influence the melting temperatures, the location of hydration or carbonation reactions, and the solute transport capability in several rock systems. In the scientific literature, COH fluids speciation has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O–nonpolar gas systems (e.g., H2O–CO2–CH4). Only few authors dealt with the experimental determination of high‐pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder + capsule piercing + gas chromatography/mass spectrometry; cold seal + silica glass capsules + Raman). In this contribution, we present a new methodology for the synthesis and the analysis of COH fluids in experimental capsules, which allows the quantitative determination of volatiles in the fluid by means of a capsule‐piercing device connected to a quadrupole mass spectrometer. COH fluids are synthesized starting from oxalic acid dihydrate at = amb and = 250°C in single capsules heated in a furnace, and at = 1 GPa and = 800°C using a piston‐cylinder apparatus and the double‐capsule technique to control the redox conditions employing the rhenium–rhenium oxide oxygen buffer. A quantitative analysis of H2O, CO2, CH4, CO, H2, O2, and N2 along with associated statistical errors is obtained by linear regression of the m/z data of the sample and of standard gas mixtures of known composition. The estimated uncertainties are typically <1% for H2O and CO2, and <5% for CO. Our results suggest that the COH fluid speciation is preserved during and after quench, as the experimental data closely mimic the thermodynamic model both in terms of bulk composition and fluid speciation.  相似文献   
8.
G. R. OSINSKI 《Geofluids》2005,5(3):202-220
Combined field studies, optical and scanning electron microscopy, and electron microprobe studies of impactites from the Ries impact structure, Germany, have allowed a clearer picture of the hydrothermal system associated with the Ries impact event to be made. Hydrothermal alteration is concentrated within impact‐generated suevites in the interior of the crater (crater suevites) and around the periphery (surficial suevites), with minor alteration in the overlying sedimentary crater‐fill deposits. The major heat source for the Ries hydrothermal system was the suevite units themselves. Hydrothermal alteration of crater‐fill suevites is pervasive in nature and comprises several distinct alteration phases that vary with depth. An early phase of K‐metasomatism accompanied by minor albitization of crystalline basement clasts and minor chloritization, was followed by pervasive intermediate argillic alteration (predominantly montmorillonite, saponite, and illite) and zeolitization (predominantly analcite, erionite, and clinoptilolite). Hydrothermal fluids were typically weakly alkaline during the main stage of alteration. In contrast to the crater‐fill suevites, alteration within surficial suevites was typically restricted to montmorillonite and phillipsite deposition within cavities and fractures. The pervasive nature of the alteration within the crater‐fill suevites was likely due to the presence of an overlying crater lake; whereas alteration within surficial suevites typically occurred under undersaturated conditions with the main source of water being from precipitation. There are exceptional outcrops of more pervasively altered surficial suevites, which can be explained as locations where water pooled for longer periods of time. Hydrothermal fluids were likely a combination of meteoric waters that percolated down from the overlying crater lake and groundwaters that flowed in from the surrounding country rocks.  相似文献   
9.
西安鼓楼油饰彩画主要病害分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了对油饰彩画进行科学保护,对具有代表性的西安鼓楼油饰彩画病害进行了调查分析.发现存在的主要病害有失光、褪变色、粉化、龟裂、起甲、脱落、烟熏、降尘等。结合实验室模拟实验对病害成因进行了初步探讨,认为导致病变的内因是木基层含水率及地仗制作工艺;外界环境因素为紫外线、温湿度、大气降尘、油烟熏及降雨等。分析结果可为彩画保护提供科学依据。  相似文献   
10.
E. SHOCK  P. CANOVAS 《Geofluids》2010,10(1-2):161-192
Calculations are presented of the extent to which chemical disequilibria are generated when submarine hydrothermal fluids mix with sea water. These calculations involve quantifying the chemical affinity for individual reactions by comparing equilibrium compositions with the compositions of mixtures in which oxidation–reduction reactions are inhibited. The oxidation–reduction reactions that depart from equilibrium in these systems provide energy for chemotrophic microbial metabolism. Methanogenesis is an example of this phenomenon, in which the combination of carbon dioxide, hydrogen and methane induced by fluid mixing is far from equilibrium, which can be approached if more methane is generated. Similarly, the production of other organic compounds is also favorable under the same conditions that permit methanogenesis. Alkanes, alkenes, alcohols, aldehydes, carboxylic acids and amino acids are among the compounds that, if formed, would lower the energetic state of the chemical composition generated in mixed fluids. The resulting positive values of chemical affinity correspond to the thermodynamic drive required for abiotic organic synthesis. It is also possible that energy release accompanies biosynthesis by chemotrophic organisms. In this way, hydrothermal ecosystems differ radically from familiar ecosystems at Earth's surface. If captured, the energy released may be sufficient to drive biosynthesis of carbohydrates, purines, pyrimidines and other compounds which require energy inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号