首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1983年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Major corrosion has been found at depth in carbonate hydrocarbon reservoirs from different geologic provinces. Fluid inclusion microthermometry and stable isotopic compositions of carbonate cements, predating major corrosion, constrain the interpretation of the evolution of parental fluids during progressive burial and prior to the major corrosion event. Post‐major corrosion mineral paragenesis includes pyrite (‐marcasite), anhydrite, kaolinite (dickite) and fluorite. Although the post‐corrosion mineral paragenesis represents minor volumes of rock, it may provide valuable insights into the post‐corrosion brine chemistry. Using reactive transport numerical models, the roles of cooling and/or mixing of brines on corrosion have been evaluated as controls for dolomitization, deep burial corrosion and precipitation of the post‐corrosion mineral paragenesis. Modelling results show that cooling of deep‐seated fluids moving upward along a fracture may cause minor calcite dissolution and porosity generation. Significant dolomitization along a fracture zone and nearby host‐rock only occurs when deep‐seated fluids have high salinities (4 mol Cl kg?1 of solution) and Darcian flow rates are relatively high (1 m3 m?2 year?1). Only minor volumes of quartz and fluorite precipitate in the newly formed porosity. Moreover, modelling results cannot reproduce the authigenic precipitation of kaolinite (dickite at high temperatures) by cooling. As an alternative to cooling as a cause of corrosion, mixing between two brines of different compositions and salinities is represented by two main cases. One case consists of the flow up along a fracture of deep‐seated fluids with higher salinities than the fluid in the wall rock. Dolomite does not precipitate at a fracture zone. Nevertheless, minor volumes of dolomite are formed away from the fracture. The post‐corrosion mineral paragenesis can be partly reproduced, and the results are comparable to those obtained from cooling calculations. Minor volumes of quartz and fluorite are formed, and kaolinite‐dickite does not precipitate. The major outputs of this scenario are calcite dissolution and slight net increase in porosity. A second case corresponds to the mixing of low salinity deep‐seated fluids, flowing up along fractures, with high salinity brines within the wall rock. Calculations predict major dissolution of calcite and precipitation of dolomite. The post‐corrosion mineral paragenesis can be reproduced. High volumes of quartz, fluorite and kaolinite‐dickite precipitate and may even completely occlude newly formed porosity.  相似文献   
2.
Infrared spectrometry is a well-established method for the identification of minerals. Due to its simplicity and the short time required to obtain a result, it can be practiced on-site during excavation using portable infrared spectrometers. However, the identification of a mineral may not be sufficient. For example, a lime plaster floor and a crushed chalk surface have a similar appearance and are composed of the same mineral – calcite. Here we exploit differences in the infrared spectra of geogenic, biogenic and pyrogenic calcites for the identification of each calcite type. The infrared calcite spectrum has three characteristic peaks in the region of 400–4000 cm−1, designated ν2, ν3, and ν4. When a calcite sample is ground, as part of the measurement preparation procedure, some grinding dependent changes will be revealed in the infrared spectrum. With additional grinding, the ν3 peak narrows and the heights of the ν2 and ν4 peaks decrease, when both are normalized to the ν3 height. By plotting the normalized heights of the ν2versus the ν4 of several grindings of the same sample, a characteristic trend line is formed for each calcite type. The trend lines of geogenic calcites have the shallowest slopes and highest ν4 values when compared to pyrogenic calcites, which can be further divided to ash and plaster/mortar samples. This method can assist in distinguishing between the various calcites, and provide insights into homogeneity and preservation state of the calcitic materials in question.  相似文献   
3.
The first occurrence of immiscibility in magmas appears to be most important in the magmatic–hydrothermal transition, and thus studies of magmatic immiscibility should be primarily directed towards recognition of coexisting silicate melt and essentially non-silicate liquids and fluids (aqueous, carbonic and sulphide). However, immiscible phase separation during decompression, cooling and crystallization of magmas is an inherently fugitive phenomenon. The only remaining evidence of this process and the closest approximation of natural immiscible magmatic liquids and vapours can be provided by melt and fluid inclusions trapped in silicate glasses and magmatic phenocrysts. Such inclusions are often used as a natural experimental laboratory to model the process of exsolution and the compositions of volatile-rich phases from a wide range of terrestrial magmas. In this paper several examples from recent research on melt and fluid inclusions are used to demonstrate the significance of naturally occurring immiscibility in understanding some large-scale magma chamber processes, such as degassing and partitioning of metals.  相似文献   
4.
Y. LIU  G. CHI  K. M. BETHUNE  B. DUBÉ 《Geofluids》2011,11(3):260-279
The Red Lake mine trend, a deformation zone in the Archean Red Lake greenstone belt that hosts the world‐class Campbell‐Red Lake gold deposit, is characterized by abundant foliation‐parallel iron‐carbonate ± quartz veins with banded colloform‐crustiform structures and cockade breccias overprinted by silicification and gold mineralization. There is an apparent incompatibility between the cavity‐fill structures of the veins and breccias (typically developed at shallow crustal depths) and the upper greenschist to lower amphibole facies metamorphic conditions recorded in the host rocks (indicating relatively deep environments). This, together with the development of veins along the foliation plane, represents an enigmatic problem that may be related to the interplay between fluid dynamics and stress field. We approach this problem through systematic study of fluid inclusion planes (FIPs) in the vein minerals, including the orientations of the FIPs and the pressure–temperature conditions inferred from fluid inclusion microthermometry. We find that fluid inclusions in the main stage vein minerals (pregold mineralization ankerite and quartz and syn‐ore quartz) are predominantly carbonic without a visible aqueous phase, whereas many inclusions in the postore stage contain an aqueous phase. Most FIPs are subvertical, and many are subparallel to the foliation. High fluid pressure coupled with the high wetting angles of the water‐poor, carbonic fluids may have been responsible for the abundance of brittle deformation features. The development of subvertical FIPs is interpreted to indicate episodic switching of the maximum principal compressive stress (σ1) from subhorizontal (perpendicular to the foliation) to subvertical (parallel to the foliation) orientation. The subvertical σ1 is favorable for the formation of foliation‐parallel veins, as fractures are preferentially opened along the foliation in such a stress regime, the origin of which may be linked to the fluid source.  相似文献   
5.
The effect of carbonic anhydrase enzyme on the precipitation kinetics and phase transformations of calcium carbonate, and on the strength development of lime mortars has been investigated with saturated lime solutions, lime pastes and lime mortars under atmospheric conditions. The results clearly show that carbonic anhydrase catalyzes the reaction between carbon dioxide and aqueous lime, and increases the rate of calcium carbonate crystallization, the yield of the carbonation reaction and mortar strength at early ages. This is most likely a kinetic effect associated with the increased rate of carbonate ions supply to the solution by the enzyme. In addition, this enzyme favors the formation of stable calcite and significantly modifies its morphology by developing new crystal faces. These results suggest a novel approach for accelerating the hardening of lime mortars using carbonic anhydrase enzyme, which may offer a potentially novel approach with significant benefits on the applications of lime mortars in architectural heritage conservation as well as in construction.  相似文献   
6.
The location of Ghazali monastery away from the Nile valley within the relatively isolated environs of the Bayuda desert presents a landscape suggestive of mobility toward the monastery by those who chose to reside there as monks. To assess this potentiality, a sample of 37 individuals from the monastic cemetery (Cemetery 2) were analysed for 87Sr/86Sr and δ18O to assess residency during dental enamel formation. The data generated bring into question the nature of mobility to Ghazali monastery, particularly in regard to the potential movement of people from the Nile valley, adjacent desertic landscapes, and further afield.  相似文献   
7.
A unique red calcite generation, which fills fractures/cavities, is hosted by Mesozoic carbonates in the Transdanubian Range, Hungary. Solid inclusions are located along growth zones of calcite. Hematite, the most abundant solid inclusion, gives the red colour of it. Outcrop‐scale geometry, mineralogical features and detrital mineral assemblage (hematite, gibbsite, goethite, kaolinite, smectite, illite, Cr‐spinel, monazite, xenotime, zircon, apatite and Ti‐oxide) of calcite precipitates suggest strong correlation between the calcite and nearby karst bauxite deposits. Fluid inclusion petrography and microthermometry (< 50°C; salinity from 0 to 0.17 NaCl eq. w%) of primary fluid inclusions, and the stable isotope trend of the calcite, following the meteoric water line, clearly indicate vadose and phreatic meteoric origin in a near‐surface karst system. The late Cretaceous to mid‐Eocene unconformity‐related cavity‐filling deposits occur close to the surface; indicating that the most recent Quaternary exhumation re‐exposed those surfaces that existed at the time of calcite mineralization. Thus, red calcite precipitates are interpreted as being speleothems, vestiges of the subterranean part of the pre‐Middle Eocene karst. The infiltrated, fine bauxite particles enclosed by the calcite are the witnesses of the once areally extensive pre‐Middle Eocene bauxitic blanket that became partially eroded by the time of the deposition of the cover beds. Red calcite when found in core samples may provide good evidence on bauxite formation associated with the overlying unconformity, even if it was later removed by erosion. Therefore, presence or absence of red calcite may be used as distinguishing criteria between karst episodes with or without bauxite formation.  相似文献   
8.
Stylolites and the interfaces to the host limestone have been investigated by means of a multidisciplinary analytical approach (thin section microscopy, FIB‐TEM, organic geochemistry and petrography). Carbonate dissolution assuming different boundary conditions was simulated by applying a generic hydrogeochemical modelling approach. It is the conceptual approach to characterize and quantify traceable organic–inorganic interactions in stylolites dependent on organic matter type and its thermal maturity, and to follow stylolite formation in carbonates as result of organic matter reactivity rather than pressure solution as a main control. The investigated stylolite samples are of Upper Permian (Lopingian, Zechstein), Middle Triassic (Muschelkalk) and Late Cretaceous (Maastrichtian) age and always contain marine organic matter. The thermal maturity of the organic matter ranges from the pre‐oil generation zone (0.4–0.5% Rr) to the stage of dry gas generation (>1.3% Rr). The results of the generic hydrogeochemical modelling indicate a sharp increase of calcite dissolution and the beginning of stylolite formation at approximately 40°C, which is equivalent to a depth of less than 800 m under hydrostatic conditions considering a geothermal gradient of 30°C and a surface mean temperature of 20°C. This temperature corresponds to the pre‐oil window when kerogens release an aqueous fluid enriched in carbon dioxide and organic acids. This aqueous fluid may change the existing pore water pH or alkalinity and causes dissolution of carbonate, feldspar and quartz, and clay mineral precipitation along the stylolite. Dissolution of limestone and dolostone leads to reprecipitation of calcite or dolomite opposite of the dissolution side, which indicates only localized mass redistribution. All these integrated hydrogeochemical processes are coupled to the generation of water during organic matter maturation. In all of the calculated hydrogeochemical scenarios, H2O is a reaction product and its formation supports the suggested hypothesis.  相似文献   
9.
Colonial scleractinian corals were sampled from three levels within a Miocene marine unit of the Bakhtiari succession, Zagros Basin, central-western Iran. The first two coral-bearing intervals, A and B, contain small-scale scattered colonies and show a poor coral diversity, whereas the third, consisting of a strongly lithified limestone package, reflects a well-developed biostromal framework with higher coral skeletal volume within the Bakhtiari succession. The Bakhtiari succession coral assemblages are characterized by Porites sp. cf. P. maigensis, Porites sp. cf. P. mancietensis, Porites sp. cf. P. collegniana, Tarbellastraea reussiana, Favia sp., Montastrea sp. cf. P. tchihatcheffi, Favites sp. cf. P. neugeboreni, Favites sp. cf. P. neuvillei, Agathiphyllia sp. and Acropora sp. Sedimentological and palaeontological data indicate that the depositional environment is consistent with a mixed carbonate–siliciclastic ramp that was gently deepening basinwards from the shoreline. The hemispherical and massive growth forms of colonies and sparse branching forms dominated the well-illuminated euphotic zone. Abundant domestone and dense pillarstone coral growth fabrics interdigitating with coarse-grained terrigenous sediments developed in the shallow inner ramp environment. Branching forms and meandroid branching colonies together with some massive forms mostly inhabited the low-energy conditions of the lower euphotic to oligophotic zones of the middle ramp. In the middle parts of the mixed carbonate–siliciclastic ramp, sparse pillarstone together with domestone comprises a mixstone coral growth fabric. Fluctuations in nutrient and clastic sediment input, salinity and the growth of red algae likely terminated coral growth.  相似文献   
10.
S. SAKATA  T. MAEKAWA  S. IGARI  Y. SANO 《Geofluids》2012,12(4):327-335
Previous geochemical studies indicated that most natural gases dissolved in brines in Japan are of microbial origin, consisting of methane produced via carbonate reduction. However, some of those from gas fields in southwest Japan contain methane relatively enriched in 13C, whose origin remains to be clarified. To address this issue, chemical and isotopic analyses were performed on natural gases and brines from the gas fields in Miyazaki and Shizuoka prefectures, southwest Japan. Methane isotopic signatures (δ13C ≈ ?68‰ to ?34‰ VPDB; δ2H ≈ ?183‰ to ?149‰ VSMOW) suggest that these gases are of microbial (formed via carbonate reduction) or of mixed microbial and thermogenic origin. The relatively high δ2H‐CH4 values and their relationship with the δ2H‐H2O values argue against the possibility of their formation via acetate fermentation. The δ13C‐CO2 values (≈?5‰), together with the slope of the correlation between δ2H‐CH4 and δ13C‐CH4δ2H‐CH4δ13C‐CH4 ≈ 1), contradict the possibility of their formation via carbonate reduction followed by partial oxidation by methanotrophs. The 3He/4He ratios of the gases from Miyazaki (≈0.11–1.3 Ra) and their low correlation with δ13C‐CH4 values do not support an abiogenic origin. It is inferred therefore that the high δ13C‐CH4 values of natural gases dissolved in brines from gas fields in southwest Japan are indications of the contribution of thermogenic hydrocarbons, although whether abiogenic hydrocarbons contribute significantly to the gases from Shizuoka requires further investigation. This study has clarified that, for the future exploration of natural gases in southwest Japan, we should adopt the strategies for conventional thermogenic gas accumulations, such as checking the content, type and maturity of organic matter in the underlying sedimentary rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号