首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
An American geographer and noted international authority on water management problems in Russia and Central Asia presents an account of an expedition, in late 2005 (under the sponsorship of the National Geographic Society) to Kazakhstan and Uzbekistan, focused on the Aral Sea. The steadily drying inland sea, with a surface area of 67,500 km2 in 1960, had split into two parts and shrunk to 17,380 km2 in 2006. The paper provides an up-to-date overview of the crisis and presents an optimistic scenario of the sea's future, noting development of economic activities (particularly fisheries) in its surrounding settlements. Journal of Economic Literature, Classification Numbers: O13, Q15, Q25. 6 figures, 1 table, 55 references.  相似文献   
2.
3.
S. SAKATA  T. MAEKAWA  S. IGARI  Y. SANO 《Geofluids》2012,12(4):327-335
Previous geochemical studies indicated that most natural gases dissolved in brines in Japan are of microbial origin, consisting of methane produced via carbonate reduction. However, some of those from gas fields in southwest Japan contain methane relatively enriched in 13C, whose origin remains to be clarified. To address this issue, chemical and isotopic analyses were performed on natural gases and brines from the gas fields in Miyazaki and Shizuoka prefectures, southwest Japan. Methane isotopic signatures (δ13C ≈ ?68‰ to ?34‰ VPDB; δ2H ≈ ?183‰ to ?149‰ VSMOW) suggest that these gases are of microbial (formed via carbonate reduction) or of mixed microbial and thermogenic origin. The relatively high δ2H‐CH4 values and their relationship with the δ2H‐H2O values argue against the possibility of their formation via acetate fermentation. The δ13C‐CO2 values (≈?5‰), together with the slope of the correlation between δ2H‐CH4 and δ13C‐CH4δ2H‐CH4δ13C‐CH4 ≈ 1), contradict the possibility of their formation via carbonate reduction followed by partial oxidation by methanotrophs. The 3He/4He ratios of the gases from Miyazaki (≈0.11–1.3 Ra) and their low correlation with δ13C‐CH4 values do not support an abiogenic origin. It is inferred therefore that the high δ13C‐CH4 values of natural gases dissolved in brines from gas fields in southwest Japan are indications of the contribution of thermogenic hydrocarbons, although whether abiogenic hydrocarbons contribute significantly to the gases from Shizuoka requires further investigation. This study has clarified that, for the future exploration of natural gases in southwest Japan, we should adopt the strategies for conventional thermogenic gas accumulations, such as checking the content, type and maturity of organic matter in the underlying sedimentary rocks.  相似文献   
4.
I. Stober  K. Bucher 《Geofluids》2004,4(2):143-151
The Urach 3 research borehole in south‐west (SW) Germany has been drilled through the sedimentary cover, and the gneisses of the Variscian crystalline basement at 1600 m below the surface (Black Forest basement) has been reached. An additional 2800 m has been drilled through the fractured crystalline rocks, and the borehole has been used for a number of hydraulic tests in the context of a ‘hot‐dry rock’ (HDR) project exploring for geothermal energy. The fracture system of the basement is saturated with a NaCl brine with about 70 g L?1 dissolved solids. Water table measurements in the borehole cover a period of 13 years of observation, during which the water table continuously dropped and did not reach a steady‐state level. This unique set of data shows that the hydraulic potential decreases with depth, causing a continuous flow of fluid to the deeper parts of the upper continental crust. The potential decrease and the associated downward migration of fluid is an evidence for the progress of water (H2O)‐consuming reactions in the crystalline rocks. Computed stability relations among relevant phases at the pressure temperature (PT) conditions in the fracture system and documented fossil fracture coatings in granites and gneisses suggest that the prime candidate for the H2O‐consuming reaction is the zeolitization of feldspar. The potential of the gneisses to chemically bind H2O matches the estimated amount of migrating H2O.  相似文献   
5.
The pilot hole (VB) of the German Continental Deep Drilling Program (KTB) was drilled to a depth of 4000 m, where large amounts of free fluids were met. The KTB‐VB 4000 m fluid can be related to either Mesozoic seawater or formation water from Permo‐Carboniferous sedimentary rocks of the Weiden embayment. During the Upper Cretaceous uplift of the Bohemian Massif both fluids could have passed organic‐rich Triassic to Carboniferous formations of the Weiden embayment before invading the uplifted and fractured basement rocks of Devonian amphibolites and metagabbros, where the chemical composition of the fluids was changed by albitization, adularization, and chloritization. Results of chemical mass balances for both sources are presented. In order to concentrate the formation water from the Weiden embayment significant amphibolitization has to be assumed. During a 1‐year pumping test the chemical composition of the 4000 m fluids remained constant. The accuracy of chemical analyses is critically reviewed. An improved preconcentration method of rare earth elements and yttrium in high‐Ca‐bearing saline fluids is described.  相似文献   
6.
This study is based on 113 analyses of brines with Cl > 0.57 mol l?1 (modern seawater), which were collected and analysed mostly during several decades of exploration for gas and oil in Israel. Based on critical evaluation of correlations of elements and ionic ratios and on spider patterns, six different brine events or source brines were identified in the Phanerozoic: the Triassic, Lower Cretaceous and the Mio/Pliocene brine families which were identified in boreholes Sdom‐1, Sdom Deep‐1 and Ha'on, and the Holocene Dead Sea brines. The Triassic brines are nowadays also encountered in under‐ and overlying rock units such as the Paleozoic Negev‐Yam Suf and the Jurassic Arad Groups, respectively. The southern Jordan–Dead Sea Transform (also known as the Rift) hosts the Mio‐Pliocene Sdom Deep and Sdom brine families. Brine bodies not sufficiently isolated by impervious sedimentary layers were flushed out during the Pliocene when the southern Valley drained north‐ and westwards through the Yizre'el Valley to the Mediterranean Sea. In the northern Rift Miocene to Pliocene seawater evaporated and infiltrated into the Rift sediments and into adjacent rocks. Further diluted by freshwater, it emerges as the Ha'on brine. Together with its derivatives, they form the Ha'on family. The derivatives of the Holocene Dead Sea brine family occur along the shoreline of the recent Dead Sea. Apart of all these evaporation brines, brines deriving from dissolution of evaporites locally occur in the area. The time‐bound chemical composition of paleoseawater is considered when discussing the ionic ratios of brines generated during different geological periods. Spider patterns of each brine family are compared and, where necessary, the relationship of brines to distinct families of brines is supported by inverse modelling.  相似文献   
7.
Calcite veins in Paleoproterozoic granitoids on the Baltic Shield are the focus of this study. These veins are distinguished by their monomineralic character, unusual thickness and closeness to Neoproterozoic dolerite dykes and therefore have drawn attention. The aim of this study was to define the source of these veins and to unravel their isotopic and chemical nature by carrying out fine‐scale studies. Seven calcite veins covering a depth interval of 50–420 m below the ground surface and composed of breccias or crack‐sealed fillings typically expressing syntaxial growth were sampled and analysed for a variety of physicochemical variables: homogenization temperature (Th) and salinity of fluid inclusions, and stable isotopes (87Sr/86Sr, 13C/12C, 18O/16O), trace‐element concentrations (Fe, Mn, Mg, Sr, rare earth elements) and cathodoluminescence (CL) of the solid phase. The fluid‐inclusion data show that the calcites were precipitated mainly from relatively low‐temperature (Th = 73–106°C) brines (13.4–24.5 wt.% CaCl2), and the 87Sr/86Sr is more radiogenic than expected for Rb‐poor minerals precipitated from Neoproterozoic fluids. These features, together with the distribution of δ13C and δ18O values, provide evidence that the calcite veins are not genetic with the nearby Neoproterozoic dolerite dykes, but are of Paleozoic age and were precipitated from warm brines expressing a rather large variability in salinity. Whereas the isotopic and chemical variables express rather constant average values among the individual veins, they vary considerably on fine‐scale across individual veins. This has implications for understanding processes causing calcite‐rich veins to form and capture trace metals in crystalline bedrock settings.  相似文献   
8.
The structure of brine films in grain boundaries of halite has been the subject of much controversy over the past 20 years; although a number of innovative methods have been developed to study these structures, much is still unknown and fundamental information is missing. In this study, we investigated different methods of plunge‐freezing to vitrify the brine fill of grain boundaries for natural salt polycrystal. This was followed by a preliminary study of the 3D morphology of a vitrified grain boundary in a natural rock salt sample with a focused ion beam (FIB) excavation system. We have shown that brine‐filled grain boundaries in rock salt can be efficiently well frozen when dimensions are less than about 1 mm. Coupled with an ion beam tool, cryo‐SEM allows 3D observation of the well‐frozen grain boundaries in large volumes and high resolution. Initial results of brine‐filled natural halite grain boundaries show non‐faceted crystal–brine interfaces and unexpectedly low dihedral angles at room temperature and pressure.  相似文献   
9.
Diffusion can drive significant solute transport over millions of years, but ancient brines and large salinity gradients are still observed in deep sedimentary basins. Fluid flow within abnormally pressured beds may prevent diffusive transfer over geologically significant periods, if the abnormally pressured bed is surrounded by normally pressured beds. Analytic solutions based on sediment loading and unloading demonstrate that this effect should be considered in beds with a compressibility exceeding 10?8 Pa?1, with a thickness of 100 m or more, or a sedimentation rate exceeding 10?5 m year?1. Conditions favourable for our model of abnormally pressured beds appear common in sedimentary basins. Large salinity gradients associated with clay beds have previously been attributed to membrane effects, but flow patterns associated with abnormally pressured beds appear more robust in the presence of heterogeneity and discontinuities than membrane effects. Calculations suggest that thick underpressured shales in the Alberta basin may have allowed ancient evaporatively concentrated brines to be preserved beneath a vigorous topography‐driven flow system over the last 60 My. In the Illinois basin, drained overpressured beds may have limited solute transport across the New Albany shale until approximately 250 Ma. It is unlikely, however, that overpressures could have persisted long enough to explain concentration gradients observed in the modern basin. These gradients may instead reflect relatively recent halite dissolution above the New Albany shale.  相似文献   
10.
A. WILSON  C. RUPPEL 《Geofluids》2007,7(4):377-386
Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near‐seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady‐state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt‐driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10?15 m2, comparable to compaction‐driven flow rates. Sediment permeabilities likely fall below 10?15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号