首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2013年   5篇
排序方式: 共有5条查询结果,搜索用时 562 毫秒
1
1.
Earthquakes and microtremor records are used for estimating the site response of hard rock sites comprising four three-component seismic stations which operate as part of the Israel Seismic Network. The response functions are determined by implementing the horizontal-to-vertical component spectral ratio of earthquake shear-waves (receiver function estimates) and microtremors (Nakamura's estimate) observed simultaneously at the site. The sites of seismic stations ATZ (Mt. Atzmon), MBH (Mt. Berech) and MRNI (Mt. Meron) exhibit amplification attributed to topography effects. At ATZ, within the 1.3–2.0 Hz range, the amplification is in the order of factor 4. At MBH amplification levels of 3.0–3.5 are observed in the frequency range 1.5–4.0 Hz. Station MRNI exhibits a relatively strong amplification effect (up to 4) in the frequency range of about 2.5 to 3.5 Hz. Slight amplification around 5 Hz is observed at ATR (the proposed site for a nuclear power plant). These effects were correlated with the thickness of the weathered layer above unweathered chalk. A comparison between the amplification factor observed during earthquakes and those inferred from microtremors shows that these are, in general, in agreement. However, details of the spectral ratios from different microtremor recordings are not exactly the same. Differences appear mainly in the frequency at which the maximum amplification occurs. These observations demonstrate the usefulness of non-reference technique in estimating the topographical effects of ground shaking. These methods may be used in the process of seismic hazard assessment for ridges and mountain tops, common sites for settlements, communication relay stations, bridges, rope-drive and power transmission towers.  相似文献   
2.
An important record of ground motion from a M6.4 earthquake occurring on May 1, 2003, at epicentral and fault distances of about 12 and 9 km, respectively, was obtained at a station near the city of Bingöl, Turkey. The maximum peak ground values of 0.55 g and 36 cm/s are among the largest ground-motion amplitudes recorded in Turkey. From simulations and comparisons with ground motions from other earthquakes of comparable magnitude, we conclude that the ground motion over a range of frequencies is unusually high. Site response may be responsible for the elevated ground motion, as suggested from analysis of numerous aftershock recordings from the same station. The mainshock motions have some interesting seismological features, including ramps between the P-and S-wave that are probably due to near- and intermediate-field elastic motions and strong polarisation oriented at about 39 degrees to the fault (and therefore not in the fault-normal direction). Simulations of motions from an extended rupture explain these features. The N10E component shows a high-amplitude spectral acceleration at a period of 0.15 seconds resulting in a site specific design spectrum that significantly overestimates the actual strength and displacement demands of the record. The pulse signal in the N10E component affects the inelastic spectral displacement and increases the inelastic displacement demand with respect to elastic demand for very long periods.  相似文献   
3.
We approach from a new standpoint the problem of estimating seismic hazard for some towns and villages located in Val d'Agri area (Southern Italy) that in the past have been affected by several seismic events. The estimates are carried out using a method that is based on the analysis of site seismic history extracted from macroseismic catalogues. To study the influence of site effects two different procedures have been performed: in the first, seismic hazard estimates have been deduced from epicentral data only, in the second, intensity data actually observed at the site are also considered. The difference between the two estimates can be correlated with local variations of seismic response due to local geological features which are responsible for possible cases of amplification. In order to validate the presence of such correlation, seismic hazard estimates have been compared to site amplification measurements obtained by using the HVSR (Horizontal to Vertical Spectral Ratio) technique. Our findings reveal a good correlation between seismic hazard enhancements and the presence of site amplification effects. The application of this kind of analysis to the Val d'Agri area has pointed out that the joint estimates of site seismic hazard enhancement and HVSR measurements could be a helpful tool to identify problems related to seismic microzonation.  相似文献   
4.
Abstract

A summary of dynamic measurements are presented that illustrate relations between linear seismic demand and true nonlinear response of unreinforced masonry buildings with flexible diaphragms and rocking piers subjected to a series of simulated earthquake motions.  相似文献   
5.
Long period microtremors with periods ranging from 0.5 to 10 seconds were measured in the Anchorage metropolitan area. Two horizontal components of motion were recorded at 81 sites uniformly distributed throughout the basin with spatial resolution of about 2 km. Recording at each site was done for 300 seconds with a sampling rate of 20 Hz. Repeated measurements were performed at a bedrock reference site simultaneously with the measurements in the field. The measurements were completed in six days. In addition, multiple recordings were obtained concurrently at the reference bedrock site and a sediment site. Based on these measurements the Fourier spectra were calculated for each of the site. Ground motion amplification is determined in terms of spectral ratio of horizontal spectral amplitudes at a sediment site and the reference bedrock site. Mean spectral ratio contours were evaluated for different period bands. The results show that for period band 3 to 5 seconds the spectral ratio contours agree well with the ground failure susceptiblity map of Anchorage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号