首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Seismic performance of rocking soil-structure systems subjected to near-fault pulses is investigated considering foundation uplifting and soil plasticity. An extensive parametric study is conducted including medium-to-high-rise buildings with different aspect ratios based on shallow raft foundation at stiff-to-rock sites. Mathematical directivity and fling pulses are used as input ground motion. The superstructure is assumed to have three different boundary conditions: (a) fixed-base, (b) linear soil-structure interaction (SSI), and (c) nonlinear SSI. Evidently, the prevailing pulse period Tp is a key parameter governing nonlinear SSI effects. The normalized acceleration response spectra reveal that despite beneficial effects of foundation uplifting and soil yielding in most cases, there are some minor regions in which the response accelerations are amplified. In addition, more slender buildings significantly benefit from uplifting and soil yielding when subjected to short- and medium-period directivity pulses compared to squat structures. However, response amplifications with respect to fixed-base structures are considerable in case of slender structures subjected to medium- or long-period directivity pulses. So that neglecting the SSI effects on seismic performance of rocking structures with shallow foundations, as mostly assumed in common practice, may give rise to inaccurate estimations of force demands against near-fault pulselike ground motions. Furthermore, the envelope of residual foundation tilting θr is limited to 0.015 rad, in case of directivity pulses.  相似文献   
2.
ABSTRACT

This paper is focused on effects of near-fault pulse characteristics on seismic performance of soil-structure systems considering foundation uplifting and soil yielding. To this end, an extensive parametric study is conducted. Mid-to-high-rise buildings of different aspect ratios (SR) resting on shallow mat foundations are investigated. Different vertical load-bearing safety factors (FS) of foundation as well as different soil types (i.e. soft to very dense) are considered in this study. Finite element method is used for numerical modeling. The underlying soil is simply modeled with a set of nonlinear springs and dashpots beneath the foundation. Mathematical near-fault pulse models of fling step and forward directivity are used as input ground motions. The results show that reduction in structural drift demands due to nonlinear soil-structure interaction (SSI) is more considerable in the case of short-period pulses compared to long-period ones. In more precise words, significant reduction occurs when pulse-to-fixed-base period ratio falls within 0.7–1.5 in the case of directivity pulses and 0.5–1.4 in the case of fling pulses. It is also demonstrated that the beneficial effects of nonlinear SSI reduce when the number of stories increases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号