首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2019年   1篇
  2018年   3篇
  2013年   8篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The concept of providing a fuse in a structural system has been both developed and investigated over the past few years (e.g., the use of replaceable links in eccentrically braced frames or the use of replaceable links in the new San Francisco-Oakland Bay Bridge). This paper presents a new coupling beam with a creative fuse installed in the mid-span of a steel-concrete composite beam via an end plate and high-strength bolts. First, a practical design methodology of a replaceable coupling beam is presented. Next, the seismic behavior of the proposed fuse is tested and evaluated, and two structural wall specimens with or without a fuse are designed and fabricated according to the proposed design methods. The two specimens possess similar shear capacities under large-scale cyclic loading, and the walls of the two specimens show similar failure modes; however, the new walls exhibit slightly lower levels of damage than the conventional walls. In particular, the inelastic deformation and damage of replaceable coupling beams are mainly concentrated in the fuse, whereas the non-yield segment and the beam-wall pier interfaces remain nearly intact and produce only slight damage, which is beneficial regarding the replacement of the fuse in post-earthquake events.  相似文献   
2.
This article explores the dissipation and dispersion of torsional wave resulting from imperfection in elasticity in terms of internal friction, layer width between dissimilar homogeneous viscoelastic isotropic medium having Voigt-type viscosity. The closed forms solutions for the displacement in the upper layer and lower half space are obtained separately. The generalized torsional wave period equation is obtained and the angular frequency has been plotted against wave number for different values of relevant parametric variation and certain particular cases have been deduced. Dissipation and dispersion are analysed using two and three dimensional plots along with filled contour plots.  相似文献   
3.
The effect of excess pore pressure developed in backfill soil during earthquake is an important consideration in rotational displacement prediction of gravity quay walls. Based on Newmark’s sliding block concept and stress-based excess pore pressure model, a new method is proposed to predict the critical rotational acceleration and angular acceleration time histories considering the development process of excess pore pressure in earthquake events. Then, the rotational displacement of gravity quay walls is predicted according to the calculated angular acceleration time histories. By using the proposed method, the effects of various parameters involved in the calculation have been studied by carrying out a parameter study. Analysis results reveal that the influence of excess pore pressure on the rotational displacement of gravity quay walls with saturated backfill soil is significant, so, can not be ignored; and rotational displacement is sensitive to the magnitude of earthquake, horizontal and vertical seismic accelerations of ground motion, wall and soil friction angle, and soil relative density. When the rotation and sliding of wall occur simultaneously, rotation and sliding will be inhibited by each other.  相似文献   
4.
A reduced beam section (RBS) is a new type of connection in steel moment resistant frames. In addition to the major benefits, RBS has its own weaknesses, such as web local buckling and lateral torsional buckling. The purpose of this paper is to improve the performance of European I-beam profile (IPE) with an arched cut in the flange, using a diagonal stiffener of the beam web. With the help of laboratory tests and numerical models, it was found that the use of a diagonal stiffener in the area of an arched cut increased the energy dissipation and plastic rotation capacity of RBS connection.  相似文献   
5.
Substantial damage sustained during several recent earthquakes was non structural in nature. The economic consequence in terms of non structural component damage far exceeded the structural damage. Currently, there are several analytical studies that address the interaction between non structural components or Secondary systems (S-systems) and the main supporting structure or Primary system (P-system). Only a few of these analytical approaches have been proposed to evaluate and characterize the response of the S-systems attached to torsionally coupled P-systems. In addition, the experimental verification for the analytical approaches is scarce.

In the current study, the results and observations of an experimental research program conducted to characterize the behavior of both stiffness eccentric and mass eccentric torsionally coupled Primary-Secondary systems (PS-systems) are presented. From this experimental investigation it was found that the torsional yielding of the primary system has significant implications on the deamplification of near tuned secondary system response. The location of the S-system mounted on the P-system affects the peak response amplification, and interaction with the coupled P-system.  相似文献   
6.
This article deals with the finite element analysis of dam with and without fluid-structure, soil-structure and soil-structure-fluid interaction. A two-dimensional direct coupling methodology is proposed to obtain the response of dam-reservoir-foundation system considering fluid-structure and soil-structure interaction simultaneously. The displacement based finite element technique is used to formulate the dam and foundation. The reservoir is modeled by pressure based finite element to reduce the degree of freedoms and there by the computational cost. The responses of dam, reservoir, and foundation with and without fluid-structure, soil-structure and soil-structure-fluid interaction are compared to study the influence of reservoir and soil foundation on the behavior of these respective sub systems. The fundamental frequency of individual sub system decreases with the consideration of coupling effect among these sub systems. On the comparison of the responses of dam, it is observed that the displacement and principal stresses are increased if the effect of reservoir and foundation are considered and the worst responses were observed when both the fluid-structure and soil-structure interaction effects are considered simultaneously. The magnitude and distribution of stresses within the foundation change with the consideration of soil-structure-fluid interaction. Similar to wstresses in the foundation, the hydrodynamic pressure within the reservoir also gets magnified due to interaction effects. The velocity distribution within the reservoir becomes distorted when the fluid-structure and soil-structure-fluid interaction are considered.  相似文献   
7.
In this article, a number of design approaches for 3D reinforced concrete (RC) buildings are formulated in the framework of structural optimization problems and are assessed in terms of their performance under earthquake loading. In particular, three design approaches for RC buildings are considered in this study. In the first, the initial construction cost is considered as the objective function to be minimized. The second one is formulated as a minimization problem of the torsional response, while a combined formulation is also examined as the third design approach. The third approach is considered with two distinctive formulations. According to the first approach, the torsional behavior is minimized by minimizing the eccentricity between the mass and rigidity centers, while the second one is achieved by minimizing the eccentricity between the mass and strength centers. It is shown that the optimized designs obtained according to the minimum eccentricity of the rigidity center behave better in frequent (50/50 hazard level) and occasional (10/50 hazard level) earthquakes, while the designs obtained according to the minimum eccentricity of the strength center formulation was found better in rare (2/50 hazard level) events. Designs obtained through a combined formulation seem to behave equally well in the three hazard levels examined.  相似文献   
8.
A simple stick model is presented for the inelastic seismic analysis in 3D of two-way eccentric multistory RC buildings. It has 3 DoFs per floor, point hinges at the ends of the vertical elements connecting floors, elastic story stiffness derived from the corresponding story force-interstory deformation relations of the elastic 3D structure under inverted-triangular floor loading (by torques for torsional stiffness, by horizontal forces for the lateral ones), story yield forces derived from the total resistant shear of the story vertical elements, but no coupling between lateral and torsional inelasticity. It is evaluated on the basis of comparisons of response histories of floor displacements to those from full nonlinear models in 3D of four actual buildings. Alternative locations of the story vertical element with respect to the floor mass center are examined: (a) the floor “center of twist” of the elastic 3D building under inverted-triangular floor torques; (b) the story “effective center of rigidity,” through which application of inverted triangular lateral forces does not induce twisting of floors; (c) the centroid of the secant stiffness of the story vertical members at yielding and (d) the centroid of the lateral force resistance of story vertical elements. Among alternatives (a)–(d), the floor “center of twist” provides the best agreement with floor displacement response-histories from full 3D nonlinear models. This means that the static eccentricity that matters for torsional response may be taken as that of the floor “center of twist.” The center of resistance comes up as the second-best choice.  相似文献   
9.
This study primarily investigates if the building asymmetry changes the variance of collapse capacity. The example models are five-story reinforced concrete buildings. The variance of collapse capacity is evaluated by first-order-second-moment method. There is a difference between the results of symmetric and asymmetric building models, independent of torsional behavior. The influence of record-to-record variability is more important than the effects of modeling uncertainty on the variance of collapse capacity. Plastic rotation capacity is the most important contributor to the variance of collapse capacity of high ductile buildings independent of the asymmetry.  相似文献   
10.
A seismic design procedure is described incorporating the well-accepted property that the stiffness of reinforced concrete elements is strength dependent and the requirement that the method of assigning strength to elements should be aiming at minimum torsional phenomena. Such a response allows a direct comparison with the findings of a static nonlinear analysis, which may provide the limits of story drifts and the induced plastic rotations in potential plastic hinges. The requirement of a practically translational response implies that the element strength assignment should be based on planar considerations and the initially elastic response should be of minimum torsion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号