首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   8篇
  2018年   15篇
  2014年   10篇
  2013年   70篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
A simplified model useful for assessing economic losses due to moderate seismicity events in urban areas has been developed by studying the behavior of buildings before yielding their structural system, allowing for nonuniform stiffness along their height. In particular, buildings are modeled as cantilever shear beams with uniform mass and parabolic reduction of lateral stiffness. This particular stiffness distribution is relevant, as it could be expected to occur in buildings where earthquake action is a critical structural design criterion. The equation of motion governing the dynamic behavior of the proposed model is solved analytically, finding mode shapes in terms of first and second zero-order Legendre functions. The solution is verified by comparing it with results obtained from fine mesh finite element models. The effect of reducing the lateral stiffness is then studied in the first five modes of vibration. Results include modal periods, mode shapes, modal participation factors, and derivatives of mode shapes. In general, it is found that effects of reduction of lateral stiffness in mode shapes are moderate when the lateral stiffness in the free end is smaller than about seventy percent of the lateral stiffness at the fixed end, but become significant for larger reductions. Effects are particularly important for the derivative of the mode shapes, which could play a significant role in estimating interstory drift demands in buildings. Model usefulness is showcased by analyzing a test case where both acceleration and drift demands are assessed by considering uniform beams and beams with parabolic stiffness variation, finding notable improvements by considering the latter.  相似文献   
2.
Shape memory alloys (SMA) can substantially improve the damping capacity and re-centering capability of elastomeric isolators. The objective of this study is to assess the seismic performance of smart lead rubber bearings (LRBs) equipped with double cross ferrous SMA wires. Hysteretic shear response of SMA wire-based LRB is determined using finite element method. The seismic response of a multispan continuous steel girder bridge isolated by SMA-LRB is evaluated. Hybrid SMA-LRB bearing exhibits a significantly lower shear strain demand (up to 46% reduction) and a higher energy dissipation capacity (up to 31% increase) compared to the LRB.  相似文献   
3.
文物防震措施研究初探   总被引:3,自引:3,他引:0  
台北故宫博物院珍藏中国历代名瓷和玉器其数量和种类居全世界博物馆之冠,目前陈列柜内瓷器及玉器的防震措施仍有改善的空间,因此运用现代科学方法和仪器研究文物防震措施,更突显其重要性和迫切性。本研究使用的方法为传统文物防震措施(使用微晶蜡固定、铁弗龙、橡胶垫和防震塑料垫衬底)、柜内型隔震台减震和电磁铁固定陈列柜功能性测试;运用台湾地震工程研究中心的人工地震台执行上述不同方法之实验。实验结果,传统方法抗震优劣顺序为:微晶蜡>铁弗龙>塑料垫>橡胶垫;柜内型隔震台消能减震功效可达60%;至于电磁铁固定陈列柜防震在加速度超过800gal时,才显现摇摆现象,未装电磁铁的陈列柜,加速度超过300gal时,即有自震现象。然而在瓷器、玉器陈列柜内实务执行防震措施的层面,宜使用微晶蜡固定最为经济有效,柜内型隔震台亦可使用,但需考量柜内可滑动空间是否充裕的实际状况执行。  相似文献   
4.
In this article, a collaborative structure analysis (CSA) system is developed for integrating different finite-element simulation programs. In this system, a simulated structure is divided into multiple substructures, and the interaction between the substructures is considered. Interfaces for the commercial finite-element program ABAQUS and for an open-source framework for structure analysis, OpenSees, are developed to achieve CSA integration. The CSA system is applied to analysis of a soil-structure interaction (SSI) problem, and the effects of SSI are investigated, and the efficiency and accuracy of the system are demonstrated.  相似文献   
5.
An integrated analysis of recent satellite imageries and dated aerial photos demonstrated to be a good investigation tool (Gallo et al., 2009) for the identification of new sites and for the assessment of landscape changes of wide archaeological areas in Ethiopia.  相似文献   
6.
It is still a serious challenge for structural engineers to effectively reduce the seismic responses of tall and super tall buildings to further improve these structural safeties. In order to solve this problem, in this article a new kind of structural configuration, named passive mega-sub controlled structure (PMSCS), is presented, which is constructed by applying the structural control principle into structural configuration itself, to form a new structure with obvious response self-control ability, instead of employing the conventional method. In the analysis of PMSCS the equations of motion of the seismically excited system are developed, based on a realistic analytical model of the complete mega-structural system. Expressions of the displacement and acceleration response of the structure, resulting from simulated earthquake ground motions represented by stationary and nonstationary random processes, are derived. These responses are then determined for both the PMSCS and its conventional mega-sub structure (MSS) counterpart, whose configuration was modeled after the traditional mega-frame that was used in the construction of the Tokyo City Hall. A parametric study of the structural characteristics that influence the response control effectiveness of the PMSCS is presented and discussed. The region over which these structural characteristics yield the optimum seismic response control of the PMSCS is identified and serves as a very useful design tool for practitioners. The study illustrates that the proposed PMSCS offers an effective means of controlling the seismic displacement and acceleration response of tall/super-tall mega-systems. It also overcomes shortcomings exhibited in earlier proposed mega-sub controlled structural configurations.  相似文献   
7.
Acceleration response of simple yielding structure is proportional to its own weight, but it is limited by yield strength. Thus, using rocking columns that reduces global yield strength, a limited acceleration is achieved. However, the displacement becomes large due to lower strength and higher inelasticity, but it can be controlled by adding damping. Performing fragility analyses, the seismic response of R/C frame structures with rocking columns and viscous dampers is investigated. Near field MCEER ground motions are considered. The analyses show that the story accelerations are reduced by using rocking columns, while the story displacements are controlled by using viscous dampers.  相似文献   
8.
Numerical site response analyses were carried out on the Nicastro ridge in Southern Italy in order to investigate topographic effects. First, the analyses were carried out on a simplified model by employing simple artificial signals, in order to get preliminary physical insights into the two-dimensional phenomena involved. Then, numerical analyses were carried out on a more realistic heterogeneous subsoil model developed on the basis of geotechnical and geophysical investigations. Real accelerograms were selected for these analyses. Particular attention was devoted to separating topographic from stratigraphic amplification. Finally, the topographic amplification factors were compared with literature data and Eurocode 8 recommendations.  相似文献   
9.
A direct methodology for solving the seismic intensity of each point on the capacity curve is proposed. By utilizing the procedure, a continuous curve between the structural response and the seismic intensity, the structural response function, can be easily generated. Unlike previous procedures that search for the performance point of a determined seismic intensity, the proposed methodology easily draws the full curve without iterations. The procedure is applicable to both a smooth design spectrum and an actual response spectrum. Examples indicate the methodology is accurate and fast, and convenient to be combined with existing procedures, such as Modal Pushover Analysis.  相似文献   
10.
The applicability of different pushover methods was analyzed on the example of a bridge, which was experimentally tested on three shake tables at the University of Nevada, Reno. The response of the bridge was quite complex. The intensity as well as the direction of the deck torsional rotations varied significantly, depending on the seismic intensity. At the low intensities, all the employed pushover methods estimated the displacements of the deck very well. In the case of strong earthquakes, the advantages of multi-mode and adaptive methods was demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号