首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2018年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In the last few years virtual anthropology has been used to solve different problems that could not be properly addressed using a traditional anthropological approach. Mainly when dealing with mummies or embalmed bodies, the virtual approach is the only solution to carry out a detailed analysis of the skeleton without jeopardizing the integrity of the physical remains.  相似文献   
2.
This study develops a motion-damage database (the Canterbury Earthquake Building Assessment, CEBA database) using surveyed information obtained from the Canterbury earthquake sequence. The database is then applied to derive fragility curves for non-residential buildings in New Zealand. The results indicate that unreinforced masonry buildings are the most vulnerable to damage, while the concrete shear wall buildings were found to be the most resilient. Discrepancies were found when comparing equivalent structures in New Zealand and the United States. Inherent difference of building characteristics between the two countries, significant ground failure, and accumulated damage from multiple events might explain the difference.  相似文献   
3.
Previous research has proposed the Linked Column Frame (LCF) as a lateral load-resisting system capable of providing rapid return to occupancy for buildings impacted by moderate earthquake events and collapse prevention in very large events. The LCF consists of flexible moment frames (MF) and linked columns (LC), which are closely spaced dual columns interconnected with bolted links. The linked columns (LC) are designed to limit seismic forces and provide energy dissipation through yielding of the links, while preventing damage to the moment frame under certain earthquake hazard levels. The proposed design procedure ensures the links of the linked column yield at a significantly lower story drift than the beams of the moment frame, enabling design of this system for two distinct performance states: rapid repair, where only link damage occurs and quick link replacement is possible; and collapse prevention, where both the linked column and moment frame may be damaged.

Here, the seismic performance factors for the LCF system, including the response modification factor, R, the system over-strength factor, Ω0, and the deflection amplification factor, Cd, are established following the procedures described in FEMA P695 [2009]. These parameters are necessary for inclusion of the system in the building code. This work describes the development of archetype structures, numerical models of the LCF systems, incremental dynamic analyses, and interpretation of the results. From the results, it is recommended that R, Ω0, and Cd values of 8, 3, and 5.5 be used for seismic design of the LCF system. A height limit of 35 m (115ft) is recommended at this time as taller LCFs are not considered in this study.  相似文献   
4.
This paper describes the multi-disciplinary approach to reconstruct the face of Dante Alighieri (1265–1321). Since Dante's sepulchre will be opened in 2021, the reconstructive process is based on morphological and metric data collected on the poet's cranium during the formal identification of his remains in 1921 by the anthropologist Fabio Frassetto, as well as on the resulting plaster model. Starting from this plaster model and a morphologically compatible reference mandible, since the original mandible was never found, a 3D digital model of the complete skull was obtained by reverse engineering and virtual modelling techniques. The most important aspect in this work was the method of virtual modelling proposed for the ex novo generation of the mandible. The physical model of the skull (cranium + mandible) was then produced by means of a rapid prototyping system. This model was finally used to recreate Dante's face via traditional facial reconstruction techniques currently used in forensic anthropology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号