首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2020年   1篇
  2019年   3篇
  2018年   8篇
  2014年   10篇
  2013年   34篇
  2012年   2篇
  2010年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
The concept of providing a fuse in a structural system has been both developed and investigated over the past few years (e.g., the use of replaceable links in eccentrically braced frames or the use of replaceable links in the new San Francisco-Oakland Bay Bridge). This paper presents a new coupling beam with a creative fuse installed in the mid-span of a steel-concrete composite beam via an end plate and high-strength bolts. First, a practical design methodology of a replaceable coupling beam is presented. Next, the seismic behavior of the proposed fuse is tested and evaluated, and two structural wall specimens with or without a fuse are designed and fabricated according to the proposed design methods. The two specimens possess similar shear capacities under large-scale cyclic loading, and the walls of the two specimens show similar failure modes; however, the new walls exhibit slightly lower levels of damage than the conventional walls. In particular, the inelastic deformation and damage of replaceable coupling beams are mainly concentrated in the fuse, whereas the non-yield segment and the beam-wall pier interfaces remain nearly intact and produce only slight damage, which is beneficial regarding the replacement of the fuse in post-earthquake events.  相似文献   
2.
Capacity design aims to ensure controlled ductile response of structures when subjected to earthquakes. This article investigates the performance of existing capacity design equations for reinforced concrete coupled walls and then proposes a new simplified capacity design method based on state-of-the-art knowledge. The new method is verified through a case study in which a set of 15 coupled walls are subject to nonlinear time-history analyses. The article includes examination of the maximum shear force in individual walls in relation to the total maximum shear force in the coupled wall system, and subsequently provides recommendations for design.  相似文献   
3.
孟华平  刘辉  邓振华  向其芳 《考古》2012,(8):29-41,1,103,105
2011年,湖北省文物考古研究所、北京大学考古文博学院对石家河古城三房湾遗址的东南低洼地带进行了勘探和发掘,证实该处存在城垣堆积,且走向明确。城垣的兴建年代不早于屈家岭文化晚期,至石家河文化晚期已经废弃。此次工作,为全面认识石家河古城的结构以及聚落变迁提供了重要的资料。  相似文献   
4.
Self-centering ability of unbonded post-tensioned precast concrete shear walls has been attributed to the presence of post-tensioning force. However, the experimental results presented in this paper indicate that the post-tensioning force may completely die out during cyclic loading while the walls are able to retain their superior self-centering characteristic. Moreover, the analytical study presented in this article indicates that with proper configuration of end-anchorages for post-tensioned tendons, self-centering of post-tensioned walls can be achieved even when the post-tensioning force vanishes. This study also investigates the effects of tendon layout, tendon end-anchorage configuration, and external vertical load on the self-centering ability of unbonded precast concrete shear walls subjected to earthquake loading.  相似文献   
5.
This article investigates a damage-based design approach for circular reinforced concrete (RC) columns under combined bending, shear, and torsion using decoupled damage index models. The combination of bending moment, shear, axial, and torsional loading affects the structural performance of bridge columns with respect to strength, deformation capacity and progression of damage. The damage index model proposed here permits decoupling these combined actions according to various damage limit states. This work evaluates the interaction between bending and torsional damage indices in terms of progression of damage. It also investigates the effects of the transverse reinforcement ratios and shear span. Based on experimental and analytical results increase of torsion amplified the progression of damage. The increase in transverse reinforcement ratio was found to have delayed the progression of damage and to have changed the torsional dominated behavior to flexural dominated behavior under combined bending and torsion.  相似文献   
6.
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. According to the results obtained from both approaches, degrading behavior is dominant for mid-rise RC frame buildings as it significantly amplifies seismic demand. Hence, in performance-based assessment approaches, analytical modeling of such degrading structures should be carried out carefully.  相似文献   
7.
The applicability of different pushover methods was analyzed on the example of a bridge, which was experimentally tested on three shake tables at the University of Nevada, Reno. The response of the bridge was quite complex. The intensity as well as the direction of the deck torsional rotations varied significantly, depending on the seismic intensity. At the low intensities, all the employed pushover methods estimated the displacements of the deck very well. In the case of strong earthquakes, the advantages of multi-mode and adaptive methods was demonstrated.  相似文献   
8.
Concrete shear walls are widely employed in buildings as a main resistance system against lateral loads. Early identification of seismic damage to concrete shear walls is vital for deciding post-earthquake occupancy in these structures. In this article, a method based on artificial neural networks for real-time identification of seismic damage to concrete shear walls was proposed. Inter-story drifts and plastic hinge rotation of concrete walls were used as the inputs and outputs of a MLP neural network. Modal Pushover Analysis was employed to prepare well-distributed data sets for training the neural network. The proposed method was applied to a five-story concrete shear wall building. The results from the network were compared with those obtained from Nonlinear Time History Analysis. It was observed that the trained neural network successfully detected damage to concrete shear walls and accurately estimated the severity of seismic-induced damage.  相似文献   
9.
Elastomeric pad bearings are widely applied in short- to medium-span girder bridges in China, with the superstructure restrained by reinforced concrete (RC) shear keys in the transverse direction. Field investigations after the 2008 Wenchuan earthquake reveal that bearing systems had suffered the most serious damage, such as span falling, bearing displaced, and shear key failure, while the piers and foundations underwent minor damage. As part of a major study on damage mechanism and displacement control method for short- to medium-span bridges suffered in Wenchuan earthquake, a 1:4 scale, two-span bridge model supported on elastomeric pad bearings were recently tested on shake tables at Tongji University, Shanghai. The bridge model was subjected to increasing levels of four seismic excitations possessing different spectral characteristics. Two restraint systems with and without the restraint of RC shear keys were tested. A comprehensive analytical modeling of the test systems was also performed using OpenSees. The experimental results confirmed that for the typical bridges on elastomeric pad bearings without RC shear keys, the sliding effect of the elastomeric pad bearings plays an important role in isolation of ground motions and, however, lead to lager bearing displacement that consequently increases the seismic risk of fall of span, especially under earthquakes that contain significant mid-period contents or velocity pulse components. It is suggested from the test results that RC shear keys should be elaborately designed in order to achieve a balance between isolation efficiency and bearing displacement. Good correlation between the analytical and the experimental data indicates that the analytical models for the bearing and RC shear key as well as other modeling assumptions were appropriate.  相似文献   
10.
The effect of excess pore pressure developed in backfill soil during earthquake is an important consideration in rotational displacement prediction of gravity quay walls. Based on Newmark’s sliding block concept and stress-based excess pore pressure model, a new method is proposed to predict the critical rotational acceleration and angular acceleration time histories considering the development process of excess pore pressure in earthquake events. Then, the rotational displacement of gravity quay walls is predicted according to the calculated angular acceleration time histories. By using the proposed method, the effects of various parameters involved in the calculation have been studied by carrying out a parameter study. Analysis results reveal that the influence of excess pore pressure on the rotational displacement of gravity quay walls with saturated backfill soil is significant, so, can not be ignored; and rotational displacement is sensitive to the magnitude of earthquake, horizontal and vertical seismic accelerations of ground motion, wall and soil friction angle, and soil relative density. When the rotation and sliding of wall occur simultaneously, rotation and sliding will be inhibited by each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号