首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   19篇
  2024年   1篇
  2023年   3篇
  2022年   18篇
  2021年   12篇
  2020年   26篇
  2019年   9篇
  2018年   8篇
  2017年   19篇
  2016年   21篇
  2015年   13篇
  2014年   21篇
  2013年   83篇
  2012年   23篇
  2011年   33篇
  2010年   18篇
  2009年   24篇
  2008年   28篇
  2007年   24篇
  2006年   24篇
  2005年   19篇
  2004年   17篇
  2003年   13篇
  2002年   12篇
  2001年   11篇
  2000年   14篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   12篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有527条查询结果,搜索用时 31 毫秒
1.
在明代,由于水患频发和长江主泓变动等原因,湖广武昌府城沿江江岸屡屡崩陷,当地政府遂启动江岸修筑工程。考诸史志,明代武昌府城的江岸修筑主要约有四次,分别是正统七年(1442)、成化三年(1467)、万历十七年(1589)和万历三十四年(1606)。最终修成的江岸,自武昌府城南门望山门外(今武昌解放路南端解放桥附近)起,向西折至江边,又沿江边中经黄鹤矶向下游延伸至坛角地区(今武昌和平大道武汉工人文化宫以西),长约5公里。这条堤岸确定了武昌城沿江江岸的基线,将武昌城的城市空间扩展到江边,并延续至今。  相似文献   
2.
水资源短缺一直制约着京津唐地区经济和社会的发展。20世纪70年代,因缺水引发的经济、社会问题逐渐凸显,促使中央和地方政府开始考虑实施跨流域调水工程。引滦工程作为北方最大的跨流域调水工程,其决策经历了曲折的过程。1958年,北京和唐山曾分别提出引滦河水的设想,唐山还实施了引滦入还和引还入陡工程。1972年,海河流域大旱促使中央做出加快实施引滦工程的决定,但由于地质情况复杂等原因,引滦工程设计方案被反复修改。1981年,天津提出了单独引滦济津路线并得到了中央的支持。引滦工程对缓解京津唐用水紧张发挥了重要作用,天津是引滦工程受益最大的地区。  相似文献   
3.
明人追求通过修谱与祠祭表达祖先崇拜和宗族共同体的意识。明人的祖先祭祀,依据祭祖地点,可以划分为墓祭、家祭、祠祭。娄坚《徐氏宗谱序》分析了明代江南故家大族与谱牒不盛的问题,认为吴人不能聚族在于习俗的鄙、奢所造成的,强调通过宗族建设移风易俗。明代族谱更加盛行,表现出强烈的以谱法接济宗法的观念。苏州士大夫发扬光大了宋代范仲淹设置义田、义庄的传统,以此赡族进行宗族建设,官府倡导并保护义田与义庄,形成了不同于其他地区宗族形态的特色。明代苏州处于宗族组织化的新阶段。  相似文献   
4.
Recent Paleolithic work along the middle Enisei River of central Siberia has revealed a long history of occupation that almost certainly begins in the Middle Pleistocene. Although the evidence for the Lower Paleolithic is somewhat tentative, there is good reason to believe that hunter-gatherers had periodically occupied the middle Enisei before the last interglacial. The steppe environment of the region during the Upper Pleistocene was relatively bountiful; more than 200 Upper Paleolithic sites, both before and after the Last Glacial Maximum, have been located. The region appears to have been abandoned during the Last Glacial Maximum. Most of Soviet and Russian archaeological work has been guided by a cultural–historical orientation, but recently there has been increased interest in developing adaptationist and ecological research strategies. The middle Enisei and the wider central Siberian region are key to understanding early adaptations to the north and the dimensions of Paleolithic population movements.  相似文献   
5.
本文论述了图们江地区国际性城市体系建设的必要性,提出了城市体系等级结构、职能结构和空间结构的构建设想及管理原则,并初步估算了城市体系发展各项基础设施建设及投资规模。  相似文献   
6.
Great Basin archaeologists spent the 1970s and most of the 1980s tearing down the Desert Culture hypothesis without presenting compelling means for dealing with the empirical variability that made it untenable. Recent research seeks to understand this variability by examining the effect of key variables in extreme environmental contexts, especially in wetlands and at high altitudes, and by developing and refining models of optimality that anticipate variability as the local expression of general evolutionary ecological principles. Research on intraregional and ethnic variability has lagged behind—the former because it is said to be costly, the latter because it is problematical in theory.  相似文献   
7.
An error dating from 1885 in mapping the upper Strickland River, Papua New Guinea, was reinforced and extended by government officer Charles Karius in 1929 when reporting results from a lengthy exploratory patrol. Detailed maps produced by the US Army and the Royal Australian Survey Corps in, respectively, 1942 and 1966 perpetuated these errors. It was not until 1979, with release of a series of 1:100,000 topographic maps, that long-standing errors were finally put to rest. Throughout these years, the contributions of well-informed people tended to be ignored in favour of the opinions of those whose status implied authority.  相似文献   
8.
Haig, D.W., October 2017. Permian (Kungurian) Foraminifera from Western Australia described by Walter Parr in 1942: reassessment and additions. Alcheringa 42, 37–66. ISSN 0311-5518.

Exceptionally well-preserved siliceous agglutinated Foraminifera originally recorded by Walter Parr in 1942 are redescribed and illustrated by rendered multifocal reflected-light images. Significant new observations are made on wall texture and apertural morphology. The specimens are from the Quinnanie Shale and lower Wandagee Formation in the Merlinleigh Sub-basin of the Southern Carnarvon Basin, a marginal rift that splayed from the East Gondwana interior rift. During the Early Permian, a restricted shallow sea inundated the rift. The formations are part of sequence III of the Byro Group and belong within the Kungurian Stage (Cisuralian, Lower Permian). Of the 14 agglutinated species described by Parr, six are retained under their original names, viz., Hyperammina coleyi Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], H. rudis Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], Ammodiscus nitidus Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], A. wandageeensis Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar], Tolypammina undulata Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar] and Reophax tricameratus Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]; one is transferred to a different species, viz., Thurammina texana Cushman &; Waters, 1928a Cushman, J.A. &; Waters, J.A., 1928a. Some Foraminifera from the Pennsylvanian and Permian of Texas. Contributions from the Cushman Laboratory for Foraminiferal Research 4, 3155. [Google Scholar]; six are placed with other genera, viz., Thuramminoides pusilla (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Teichertina teicherti (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Sansabaina acicula (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Tolypammina? adhaerens (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Kunklerina subasper (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]), Trochamminopsis subobtusa (Parr, 1942 Parr, W.J., 1942. Foraminifera and a tubicolous worm from the Permian of the North-West Division of Western Australia. Journal of the Royal Society of Western Australia 27, 97115. [Google Scholar]); and a species of Ammobaculites Cushman, 1910 Cushman, J.A., 1910. A monograph of the Foraminifera of the North Pacific Ocean. Part 1. Astrorhizidae and Lituolidae. United States National Museum, Bulletin 71(1), 134 pp. [Google Scholar] identified by Parr is now left in open nomenclature. From Parr's material, eight additional species are described: two new species, viz., Hyperammina parri sp. nov. and Gaudryinopsis raggatti sp. nov.; rare representatives of Aaptotoichus quinnaniensis Haig, 2003 Haig, D.W., 2003. Palaeobathymetric zonation of foraminifera from lower Permian shale deposits of a high-latitude southern interior sea. Marine Micropaleontology 49, 317334. 10.1016/S0377-8398(03)00051-3[Crossref], [Web of Science ®] [Google Scholar]; and very rare species of Lagenammina Rhumbler, 1911 Rhumbler, L., 1911. Die Foraminiferen (Thalamophoren) der Plankton-Expedition, Erster Teil, Die allgemeinen Organizationsverhaltnisse der Foraminiferen. Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, Kiel u. Leipzig, 3L.c. (1909), 1331. [Google Scholar], Giraliarella Crespin, 1958 Crespin, I., 1958. Permian foraminifera of Australia. Bureau Mineral Resources, Geology and Geophysics, Bulletin 48, 1207. [Google Scholar], Glomospira Rzehak, 1885 Rzehak, A., 1885. Bemerkungen über einige Foraminiferen der Oligocän Formation. Verhandlungen des Naturforschenden Vereins in Brünn 1884(23), 123129. [Google Scholar], Hormosinella Shchedrina, 1969 Shchedrina, Z.G., 1969. O nekotorykh izmeneniyakh v sisteme semeystv Astrorhizidae i Reophacidae (Foraminifera). Voprosy Mikropaleontologii 11, 157170. [Google Scholar], and Reophax Denys de Montfort, 1808 Denys de Montfort, P., 1808. Conchyliologie Systématique et Classification Méthodique des Coquilles, Volume 1. F. Schoell, Paris, 409. 10.5962/bhl.title.10571[Crossref] [Google Scholar], all of which are left in open nomenclature. Hyperammina rudis is the type species of Hyperamminita Crespin, 1958 Crespin, I., 1958. Permian foraminifera of Australia. Bureau Mineral Resources, Geology and Geophysics, Bulletin 48, 1207. [Google Scholar], a genus now considered a junior subjective synonym of Hyperammina Brady, 1878 Brady, H.B., 1878. On the reticularian and radiolarian Rhizopoda (Foraminifera and Polycystina) of the North Polar Expedition of 1875–76. Annals and Magazine of Natural History, ser. 1(6), 425440. 10.1080/00222937808682361[Taylor &; Francis Online] [Google Scholar]. Thuramminoides pusilla is considered a senior subjective synonym of T. sphaeroidalis Plummer, 1945 Plummer, H.J., 1945. Smaller Foraminifera in the Marble Falls, Smithwick, and Lower Strawn strata around the Llano Uplift in Texas. The University of Texas, Publication 4401, 209271. [Google Scholar], the type species of Thuramminoides Plummer, 1945 Plummer, H.J., 1945. Smaller Foraminifera in the Marble Falls, Smithwick, and Lower Strawn strata around the Llano Uplift in Texas. The University of Texas, Publication 4401, 209271. [Google Scholar]. Imagery is presented confirming that the simple cylindrical canals through the wall of Teichertia teicherti differ from the branching canals in Crithionina rotundata Cushman, 1910 Cushman, J.A., 1910. A monograph of the Foraminifera of the North Pacific Ocean. Part 1. Astrorhizidae and Lituolidae. United States National Museum, Bulletin 71(1), 134 pp. [Google Scholar], type species of Oryctoderma Loeblich &; Tappan, 1961 Loeblich, A.R. &; Tappan, H., 1961. Remarks on the systematics of the Sarkodina (Protozoa), renamed homonyms and new and validated genera. Proceedings of the Biological Society of Washington 74, 213234. [Google Scholar]. The collection contains some of the earliest representatives of the revised family Verneuilinoididae Suleymanov, 1973 Suleymanov, I.S., 1973. Nekotorye voprosy sistematiki semeystva Verneuilinidae Cushman 1927 v svyazi s usloviyami obitaniya. Dokladari Uzbekiston SSR. Fanlar Akademiyasining, Tashkent 1973, 3536. [Google Scholar], herein elevated from subfamily rank, and considered to include Pennsylvanian–Cisuralian representatives of Mooreinella Cushman &; Waters, 1928a Cushman, J.A. &; Waters, J.A., 1928a. Some Foraminifera from the Pennsylvanian and Permian of Texas. Contributions from the Cushman Laboratory for Foraminiferal Research 4, 3155. [Google Scholar], Aaptotoichus Loeblich &; Tappan, 1982 Loeblich, A.R. &; Tappan, H., 1982. A revision of mid-Cretaceous textularian foraminifers from Texas. Journal of Micropalaeontology 1, 5569. 10.1144/jm.1.1.55[Crossref] [Google Scholar], Digitina Crespin &; Parr, 1941 Crespin, I. &; Parr, W.J., 1941. Arenaceous Foraminifera from the Permian rocks of New South Wales. Journal and Proceedings of the Royal Society of New South Wales 74, 300311. [Google Scholar], Gaudryinopsis Podobina, 1975 Podobina, V.M., 1975. Foraminifery Verkhnego Mela i Paleogena zapadno-Sibirskoy nizmennosti, ikh znachenie dlya stratigrafii. Tomsk University Press, Tomsk, 264. [Google Scholar], Caronia Brönnimann, Whittaker &; Zaninetti, 1992 Brönnimann, P., Whittaker, J.E. &; Zaninetti, L., 1992. Brackish water foraminifera from mangrove sediments of southwestern Viti Levu, Fiji Island, Southwest Pacific. Revue de Paléobiologie 11, 1365. [Google Scholar] (=Palustrella Brönnimann, Whittaker &; Zaninetti, 1992 Brönnimann, P., Whittaker, J.E. &; Zaninetti, L., 1992. Brackish water foraminifera from mangrove sediments of southwestern Viti Levu, Fiji Island, Southwest Pacific. Revue de Paléobiologie 11, 1365. [Google Scholar]) and Verneuilinoides Loeblich &; Tappan, 1949 Loeblich, A.R. &; Tappan, H., 1949. New Kansas Lower Cretaceous Foraminifera. Journal of the Washington Academy of Sciences 39, 9092. [Google Scholar].

David W. Haig [] Centre for Energy Geoscience, School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.  相似文献   
9.
Earliest Triassic shales in the Coal Cliff Sandstone, Caley Formation, Widden Brook Conglomerate and Dooralong Shale (all basal Narrabeen Group) of the Sydney Basin contain a low diversity fossil flora that survived the greatest mass extinction of all time at the Permian-Triassic boundary. Only one species of seed fern is known from this flora and its affinities were unclear until discovery of its reproductive organs and complete large leaves. An ovuliferous reproductive organ, Peltaspermum townrovii sp. nov., can be attributed to the same plant as the leaves because of their identical stomatal apparatus, which is cyclocytic with papillae overhanging the stomatal pit. Polleniferous organs, Permotheca helbyi sp. nov., may have belonged to the same plant, but are only linked by evidence of association on the same bedding plane yielding no other gymnosperms. Pollen masses found within the polleniferous organ include grains identified as Falcisporites australis (de Jersey) Stevens (1981) when found dispersed. The leaves of this plant have long been enigmatic and attributed to ‘Thinnfeldia’ callipteroides or ‘Dicroidium’ callipteroides; however, these genera had very different cuticular structure. Reassessment of the frond architecture of this plant, based on a large, nearcomplete specimen together with information from cuticles and ovuliferous organs, allows reassignment to Lepidopteris callipteroides (Carpentier) comb. nov. The remarkable cuticle thickness, small stomatal size and low stomatal index of these leaves reflect a time of unusually high atmospheric concentrations of carbon dioxide. This plant was an invader of the Sydney Basin from northern Gondwana, spreading southward during the post-apocalyptic earliest Triassic greenhouse.  相似文献   
10.
L. Jiang  W. Pan  C. Cai  L. Jia  L. Pan  T. Wang  H. Li  S. Chen  Y. Chen 《Geofluids》2015,15(3):483-498
Permian hydrothermal activity in the Tarim Basin may have been responsible for the invasion of hot brines into Ordovician carbonate reservoirs. Studies have been undertaken to explain the origin and geochemical characteristics of the diagenetic fluid present during this hydrothermal event although there is no consensus on it. We present a genetic model resulting from the study of δ13C, δ18O, δ34S, and 87Sr/86Sr isotope values and fluid inclusions (FIs) from fracture‐ and vug‐filling calcite, saddle dolomite, fluorite, barite, quartz, and anhydrite from Ordovician outcrops in northwest (NW) Tarim Basin and subsurface cores in Central Tarim Basin. The presence of hydrothermal fluid was confirmed by minerals with fluid inclusion homogenization temperatures being >10°C higher than the paleo‐formation burial temperatures both in the NW Tarim and in the Central Tarim areas. The mixing of hot (>200°C), high‐salinity (>24 wt% NaCl), 87Sr‐rich (up to 0.7104) hydrothermal fluid with cool (60–100°C), low‐salinity (0 to 3.5 wt% NaCl), also 87Sr‐rich (up to 0.7010) meteoric water in the Ordovician unit was supported by the salinity of fluid inclusions, and δ13C, δ18O, and 87Sr/86Sr isotopic values of the diagenetic minerals. Up‐migrated hydrothermal fluids from the deeper Cambrian strata may have contributed to the hot brine with high sulfate concentrations which promoted thermochemical sulfate reduction (TSR) in the Ordovician, resulting in the formation of 12C‐rich (δ13C as low as ?13.8‰) calcite and 34S‐rich (δ34S values from 21.4‰ to 29.7‰) H2S, pyrite, and elemental sulfur. Hydrothermal fluid mixing with fresh water in Ordovician strata in Tarim Basin was facilitated by deep‐seated faults and up‐reaching faults due to the pervasive Permian magmatic activity. Collectively, fluid mixing, hydrothermal dolomitization, TSR, and faulting may have locally dissolved the host carbonates and increased the reservoir porosity and permeability, which has significant implications for hydrocarbon exploration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号