首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2013年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
During its long history of developing and deploying remote sensing instruments, NASA has provided scientific data that have benefitted a variety of scientific applications among them archaeology. Multispectral and hyperspectral instruments mounted on orbiting and sub-orbital platforms have provided new and important information for the discovery, delineation and analysis of archaeological sites worldwide. Since the early 1970s, several of the ten NASA centers have collaborated with archaeologists to refine and validate the use of active and passive remote sensing for archaeological use. The Stennis Space Center (SSC), located in Mississippi USA has been the NASA leader in archaeological research. Together with colleagues from Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and the Jet Propulsion Laboratory (JPL), SSC scientists have provided the archaeological community with useful images and sophisticated processing that have pushed the technological frontiers of archaeological research and applications. Successful projects include identifying prehistoric roads in Chaco canyon, identifying sites from the Lewis and Clark Corps of Discovery exploration, and assessing prehistoric settlement patterns in southeast Louisiana. The Scientific Data Purchase (SDP) stimulated commercial companies to collect archaeological data. At present, NASA formally solicits “space archaeology” proposals through its Earth Science Directorate and continues to assist archaeologists and cultural resource managers in doing their work more efficiently and effectively. This paper focuses on passive remote sensing and does not consider the significant contributions made by NASA active sensors. Hyperspectral data offers new opportunities for future archaeological discoveries.  相似文献   
2.

This essay explores two closely entwined issues in recent history of federal R&D policy: (a) the disposition of the US government intellectual property (IP), and (b) how to best assess the effectiveness of federal patenting and licensing policies. It does so by examining two decades of patenting policy and practice at the National Aeronautics and Space Administration (NASA). The essay concludes with observations on the limits of our current approach to collecting data on the disposition of federal IP, and an alternative framework for examining the role of IP in the history of modern technology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号