首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This article aims to study the dynamic characteristics of soil in Bam, southeastern Iran. Fundamental frequency and amplification factor of soil sediment were estimated by microtremor measurement. This procedure was performed at 49 sites in the city. Two 120-second data were recorded at each site. Segmental cross spectra were applied to calculate spectrum, Nakamura's method (H/V) was used for analyzing data and fundamental frequency and amplification factor values were derived. Iso-frequency and iso-amplification maps of the city were prepared. Results show that soil type in Bam city is mainly stiff, although amplification factor is relatively large. There is a short period zone in northwest to southeast direction. Sediment depth was estimated using a correlation between fundamental frequency and sediment thickness. Results obtained from microtremors were compared to the geotechnical boreholes and it was shown that microtremors can be used for a rough estimation of sediment thickness. Damage distribution map of Bam due to the Bam earthquake on December 26, 2003 was prepared by both field and aerial investigation. Quality of buildings in Bam was evaluated, as a result a crude zoning map on the building quality was prepared. Finally, it was concluded that several factors have contributed to damage intensity variation; earthquake characteristics, local site effect, and buildings' quality. All mentioned parameters affected the damage variation.  相似文献   
2.
The region of Ilirska Bistrica is one of the most seismically active areas of Slovenia, where 15 damaging earthquakes with maximum intensity equal or greater than V EMS-98 have occurred in the last 100 years. These earthquakes have shown that strong site effects are characteristic of the parts of the town that are built on soft Pliocene clay and sand overlain by Quaternary alluvium. Since there is a lack of boreholes and geophysical and earthquake data, the microtremor horizontal-to-vertical spectral ratio (HVSR) method was applied to a 250 m dense grid of free-field measurements over an extended area and to a 200 m dense grid in the town area in order to assess the fundamental frequency of the sediments. Measurements were additionally performed in ten characteristic houses to assess the main building frequencies. The effects of wind and artificial noise on the reliability of the results were analyzed. The map of the fundamental frequencies of sediments shows a distribution in a range of 1–20 Hz. The lower frequency range (below 10 Hz) corresponds to the extent of Pliocene clays and sand overlain by alluvium, which form a small basin, and the higher frequencies to flysch rocks, but variations within short distances are considerable. The measurements inside the buildings of various heights (2–6 stories) showed main longitudinal and transverse frequencies in the range 3.8–8.8 Hz. Since this range overlaps with the fundamental frequency range for Pliocene and Quaternary sediments (2–10 Hz), the danger of soil-structure resonance is considerable, especially in the northern part of the town. Soil-structure resonance is less probable in the central and southern part of the town, where higher free-field frequencies prevail. These observations are in agreement with the distribution of damage caused by the 1995 earthquake (ML?=?4.7, Imax?=?VI EMS-98), for which a detailed damage survey data is available.  相似文献   
3.
The influence of local geology and soil conditions on the intensity and the amplification of ground shaking are well known. Part of the old city center of Trieste is built on the site of a former salina, placed at a river mouth and is characterized by soft sediments several tens of meters thick. A new accelerometric station has been recently installed in a historical building, in order to analyse earthquake-induced site amplifications. This station has recorded five regional earthquakes and the related records are compared to those obtained at a nearby bedrock-installed accelerometeric station. Fourier and response spectra for all components are computed and both the H/V ratio and the reference station techniques are used to assess site effects. Noise measurements performed in the historical building, where the accelerometer is located, confirm these results. Relevant amplifications are detected in the frequency range of 2–4 Hz, particularly important for the type of buildings present in this part of the city.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号