首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Samples of red and black gloss from Greek Attic pottery of the late sixth to fifth centuries bc were examined using scanning electron microscopy (SEM and FIB/STEM). The focus of the study was the chemical and microstructural characterization of the red gloss that was first produced during this period. Two groupings of red gloss were revealed. One red was found to be compositionally similar to the black glosses (labelled ‘LCM coral red’). The other red showed more significant chemical differences, such as higher calcium and magnesium, in comparison to the black (labelled ‘HCM coral red’). The existence of two chemically distinct reds—otherwise identical in colour and texture—suggests that there was more than one source of clay available to the Attic potters for producing red.  相似文献   
2.
The structure of brine films in grain boundaries of halite has been the subject of much controversy over the past 20 years; although a number of innovative methods have been developed to study these structures, much is still unknown and fundamental information is missing. In this study, we investigated different methods of plunge‐freezing to vitrify the brine fill of grain boundaries for natural salt polycrystal. This was followed by a preliminary study of the 3D morphology of a vitrified grain boundary in a natural rock salt sample with a focused ion beam (FIB) excavation system. We have shown that brine‐filled grain boundaries in rock salt can be efficiently well frozen when dimensions are less than about 1 mm. Coupled with an ion beam tool, cryo‐SEM allows 3D observation of the well‐frozen grain boundaries in large volumes and high resolution. Initial results of brine‐filled natural halite grain boundaries show non‐faceted crystal–brine interfaces and unexpectedly low dihedral angles at room temperature and pressure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号