首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2024年   1篇
  2019年   5篇
  2014年   2篇
  2013年   14篇
  2008年   1篇
  2007年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
In this paper, the Member Discrete Element Method (MDEM) is modified and perfected for three aspects: the algorithm itself, loading and computational efficiency, and to accurately and quantitatively simulate the progressive collapse for large-span spatial steel structures. In addition, the corresponding computational programs are compiled. First, from the perspective of the method, a meshing principle for discrete element models is determined, a treatment for material nonlinearity and strain rate effect is proposed, and a damping model is established. Next, the Displacement Method is introduced to determine the multi-support excitation for the MDEM, and then motion equations of particles under multi-support excitation are derived. On this basis, the specific process of gravitational field loading is presented. Furthermore, parallel implementation strategies for the MDEM based on OpenMP are constructed. Finally, the collapse simulation of a 1/3.5-scaled single-layer reticulated dome shaking table test model under multi-support excitation is carried out. The comparison demonstrates that the ultimate load and failure mode as well as the complete collapse time of the numerical results are consistent with the experimentally measured responses, and the configuration variations from member buckling and local depression until collapse failure are fully captured. Moreover, the displacement time-history curves obtained using MDEM are almost identical to the experimental measurements, and there is a nuance only in the amplitude. It is verified that MDEM is capable of precisely addressing the collapse failure for large-span spatial steel structures. Additionally, the failure mechanism for structures of this type is naturally revealed.  相似文献   
2.
It is still a serious challenge for structural engineers to effectively reduce the seismic responses of tall and super tall buildings to further improve these structural safeties. In order to solve this problem, in this article a new kind of structural configuration, named passive mega-sub controlled structure (PMSCS), is presented, which is constructed by applying the structural control principle into structural configuration itself, to form a new structure with obvious response self-control ability, instead of employing the conventional method. In the analysis of PMSCS the equations of motion of the seismically excited system are developed, based on a realistic analytical model of the complete mega-structural system. Expressions of the displacement and acceleration response of the structure, resulting from simulated earthquake ground motions represented by stationary and nonstationary random processes, are derived. These responses are then determined for both the PMSCS and its conventional mega-sub structure (MSS) counterpart, whose configuration was modeled after the traditional mega-frame that was used in the construction of the Tokyo City Hall. A parametric study of the structural characteristics that influence the response control effectiveness of the PMSCS is presented and discussed. The region over which these structural characteristics yield the optimum seismic response control of the PMSCS is identified and serves as a very useful design tool for practitioners. The study illustrates that the proposed PMSCS offers an effective means of controlling the seismic displacement and acceleration response of tall/super-tall mega-systems. It also overcomes shortcomings exhibited in earlier proposed mega-sub controlled structural configurations.  相似文献   
3.
The frequency content of ground motions seems to be one of the most important parameters to explain the structural damage experienced during worldwide strong earthquakes. The frequency content of ground motions can be characterized by various stochastic and/or deterministic indicators: the frequency bandwidth indicator ? (Cartwright & Longuet-Higgins) related to the power spectral density function and, respectively, the control (corner) period Tc of the structural response spectra or the mean period TM . Peak ground velocity (PGV) and the ratio PGA/PGV can be used as either damage potential parameters or frequency content indicators. A comparative analysis of stochastic and deterministic frequency content indicators and of PGV is applied to a set of 30 strong ground motion records having peak ground acceleration (PGA) from 0.2–0.8 g and recorded on 4 continents during the last 70 years.  相似文献   
4.
The seismic assessment of special bridges, even under the hypothesis of full knowledge of site conditions, structural characteristics, and seismic activity at their location, is not an easy and straightforward task due to the complexities and uncertainties related to the finite-element modeling approaches, structural loading scenarios, and seismic analysis methodologies. In this article, a series of nonlinear static and dynamic finite-element analyses on the Mogollon Rim Viaduct are performed with consideration of both uniform and conditionally simulated non-uniform seismic motions. The failure modes of the bridge using different numerical modeling approaches are discussed, and the degree of sensitivity of its response to the different seismic assessment strategies is evaluated. The effect of the multi-component, multi-support and multi-directional excitations of ground motions on the design and response are studied, and the pros and cons of the commonly used structural analysis methodologies of bridges are also addressed. The numerical results of the present study provide a deeper insight into the nonlinear behavior of curved reinforced-concrete bridges, and suggest practice-oriented approaches for their seismic assessment.  相似文献   
5.
The impact of different modification techniques on ground motion characteristics and results of seismic geotechnical analyses is investigated for a site in California. Twenty-eight motions were selected and scaled and also modified using both time domain (TD) and frequency domain (FD) techniques. PGV and PGD of the TD-modified motions are found to be larger than their FD-modified counterparts, but slightly less than the scaled ground motion characteristics. Cyclic stress ratios and amplification factors are similar for all sets of motions. Newmark-type slope displacements caused by the scaled and modified ground motions are similar (within 25%) for a variety of sliding masses.  相似文献   
6.
This article develops a method to generate ground motion time histories that maximize the response of a given linearly elastic structure. The root mean square (RMS) level of the input power spectral density (PSD) is used as a strong motion parameter. It is related to seismological data that is readily available. An empirical relation to estimate RMS value of the PSD from peak ground acceleration, magnitude, rupture distance, and shear wave velocity is derived from world-wide strong motion data. The ground motion is obtained by solving the inverse problem such that the structural response is maximized under the constraint of fixed value of RMS level of the input PSD enforced using a Lagrange multiplier. The proposed methodology is illustrated for a single-degree of freedom system, a six storey building and an earthen dam. It is shown that the critical PSD obtained in all the cases is a narrow band process resulting in stochastic resonance and not a Dirac-delta function with the entire energy of the system concentrated at its natural frequency. Moreover, the critical excitation samples generated using this critical PSD resembles actual earthquake acceleration time histories.  相似文献   
7.
Post-earthquake survey of several strong earthquakes demonstrated that pounding between the neighboring civil infrastructures, such as building and highway bridge, would induce significant structural damage, even collapse, of the structures. This article presents a pounding experiment of highway bridge, especially focused on the point-to-surface pounding of bridge decks due to torsional rotation, when subjected to extreme bi-directional earthquake excitations. To experimentally investigate the point-to-surface pounding between the neighboring bridge segments, a base-isolated highway bridge model, in which the mass centers of the bridge decks do not strictly coincide with the corresponding stiffness centers, is manufactured. A series of shaking table tests of the highway bridge model are carried out for the structural model with large and small separations of the expansion joint to investigate the dynamic responses of the bridge model with and without including the pounding effects, respectively. An analytical model of the highway bridge, in which the point-to-surface pounding is represented by using a modified contact-friction element, is also established based on the lump mass model with three degrees of freedom for each segment. Based on the test results, the model parameters of the modified contact-friction element are identified, and the analytical responses of the highway bridge model with pounding effects are compared with the experimental data. The results show that the highway bridge is vulnerable to the deck rotation, and point-to-surface pounding should be considered in the structural design to lighten the pounding damage of the highway bridge under strong earthquake excitations.  相似文献   
8.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   
9.
The design seismic base shear was obtained from the spectral elastic acceleration Sa divided by a system behavior factor R, accounting for ductility and overstrength. The behavior factor is currently taken as a constant for a given type of structures in various codes regardless of structural periods. In fact, the behavior factor is also a spectrum varying with the natural periods of structures. In order to understand the relationship between the spectral values and the corresponding characteristic periods in these two spectra, Sa and Rμ, this article carries out an investigation into the characteristic periods of 370 seismic ground motions from 4 site types. It is found that the periods Tga at which the peak values appear in the Sa spectra are much less than the periods T gR at which the Rμ spectra take a maximum value. Two characteristic periods are necessary to determine the seismic action if a more elaborate procedure is required in practice. Statistical study on these two periods is carried out for the 370 records, and results are presented. For site types A–D, the ratio of these two periods has a statistically averaged value of 5.5–6.7.

The maximum input energy S EI , relative velocity S v , power density P SD , and the Fourier amplitude F S spectra were constructed to determine their characteristic periods, respectively. These four spectra predict similar characteristic periods to T gR . T gR is very close to the characteristic period T gd of the elastic displacement spectra.

Analysis of SDOF systems under combined harmonic excitations shows that the Sa spectrum is more sensitive to high-frequency excitations, while the displacement spectrum is more sensitive to long period excitations. For the elastic-plastic Sa spectra, peak values tend to appear at shorter periods even the amplitudes of the longer periods are greater than that of the shorter period. This provides an explanation on different characteristic periods in the Sa and Rμ spectra.  相似文献   
10.
Reduced-scale external RC beam-column specimens with three typical deficiencies as beam weak in flexure (BWF), beam weak in shear (BWS) and column weak in shear (CWS) were tested under cyclic excitations of different frequencies, varying from 0.025–2.0 Hz. Parameters like load carrying capacity, stiffness degradation, energy dissipation, principal tensile stress were monitored for exploring the effect of rate of loading on different types of deficient beam-column connections in a holistic manner. Test results showed that the rate effect is significant in beam-column connection with BWF, while the same is not so significant in BWS and CWS specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号