首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2019年   1篇
  2013年   6篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
It has been pointed out that the static lateral response procedure for base isolated structures presented in IBC somewhat overestimates the seismic story force [Lashkari and Kircher, 1993 Lashkari, B. and Kircher, C. A. . Evaluation of SEAOC/UBC analysis procedures, Part 1: Stiff superstructure. Proceedings of a Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control. Redwood City, California. ATC Report 17-1.  [Google Scholar]; Constantinou et al., 1993 Constantinou, M. C., Winters, C. W. and Theodossiou, D. . Evaluation of SEAOC and UBC analysis procedures, Part 2: Flexible Superstructure. Proceedings of a Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control. Redwood City, California. ATC Report 17-1.  [Google Scholar]]. In this article IBC equivalent static method for base shear distribution of seismic isolated structures is evaluated. For this purpose one-story to six-story building models are designed according to equivalent lateral response procedure for different elastomeric isolation systems. The results of equivalent lateral response procedure in parameters such as base shear and vertical distribution of base shear are compared with results obtained from dynamic nonlinear analysis and the efficiency and limitations of its application are investigated. In general, the results of equivalent lateral response procedure in base shears are acceptable within the scope of this procedure, but the proposed triangular distribution of base shear is somewhat conservative. So a new formulation for vertical distribution of base shear is proposed which results in a more realistic distribution of shear over the height of isolated buildings. The accuracy of the new formulation is examined by comparing the resulting responses obtained from this study with those calculated by nonlinear time history analysis.  相似文献   
2.
Elastomeric pad bearings are widely applied in short- to medium-span girder bridges in China, with the superstructure restrained by reinforced concrete (RC) shear keys in the transverse direction. Field investigations after the 2008 Wenchuan earthquake reveal that bearing systems had suffered the most serious damage, such as span falling, bearing displaced, and shear key failure, while the piers and foundations underwent minor damage. As part of a major study on damage mechanism and displacement control method for short- to medium-span bridges suffered in Wenchuan earthquake, a 1:4 scale, two-span bridge model supported on elastomeric pad bearings were recently tested on shake tables at Tongji University, Shanghai. The bridge model was subjected to increasing levels of four seismic excitations possessing different spectral characteristics. Two restraint systems with and without the restraint of RC shear keys were tested. A comprehensive analytical modeling of the test systems was also performed using OpenSees. The experimental results confirmed that for the typical bridges on elastomeric pad bearings without RC shear keys, the sliding effect of the elastomeric pad bearings plays an important role in isolation of ground motions and, however, lead to lager bearing displacement that consequently increases the seismic risk of fall of span, especially under earthquakes that contain significant mid-period contents or velocity pulse components. It is suggested from the test results that RC shear keys should be elaborately designed in order to achieve a balance between isolation efficiency and bearing displacement. Good correlation between the analytical and the experimental data indicates that the analytical models for the bearing and RC shear key as well as other modeling assumptions were appropriate.  相似文献   
3.
Seismic resilience and continued operation of bridges after earthquakes are important seismic design criteria. A new seismic protection concept for integral bridge piers is explored that uses sliding bearings to separate the superstructure from the piers. The influence of sliding bearings on the seismic response of a representative 3-span integral highway bridge is investigated. With sliding bearings, the pier column shear force was limited to the bearing design friction force. Furthermore, the abutment ductility demands were found to be insensitive to the friction forces in the sliding bearings because the bridge displacement demands were controlled by the equal displacement rule.  相似文献   
4.
Seismic isolation systems that mitigate seismic response are generally applied at the base of a building; however, architectural, functional, and cost considerations have motivated the application of isolation systems at inter-story locations. In this article, we systematically examine the effectiveness of inter-story isolation systems as a function of their location, and explore alternative approaches for selecting their properties. Single-story isolation systems are shown to be effective in mitigating force demands above the isolation system but less effective in mitigating forces below the isolation system. Finally, the practical aspects of designing an inter-story isolation system to accommodate light loads are discussed.  相似文献   
5.
The unseating of decks is one of the most prevalent failure modes of bridges after earthquake events, as observed in the 2010 Chile Earthquake. Damaged bridges in Chile often had skew angles and were supported on elastomeric bearings. Similar bridge construction practices with decks supported on elastomeric bearings are also common in the central and eastern U.S. (CEUS). The seismic displacement demands on skewed bridges are more complicated than those on bridges without skew angles due to the coupling of translational modes with the rotational mode of vibration. The study presented in this article seeks to understand the seismic response of skewed bridge decks supported on elastomeric bearings. The scope of the study is limited to one- and two-span bridges, which constitute a large portion of bridge inventory in the CEUS. The vibration modes of skewed bridge decks are derived in closed form and the modes are compared when the gaps between the bridge deck and the abutment are open and when one of the gaps is closed due to seismic excitation. Nonlinear response history analyses are carried out to understand the effects of vertical ground motion, skew angles, aspect ratios, and different ground motion types on the seismic displacement demand in these cases. Amplification factors that approximate the increase in the displacement demand due to the skew angle are proposed.  相似文献   
6.
The focus of this article is on seismic-response prediction of Stable Unbonded-Fiber Reinforced Elastomeric Isolators (SU-FREIs). The lateral load-displacement of a SU-FREI can be characterized with a gradual softening that is followed by stiffening. An extended Bouc-Wen Model is developed to simulate the response behavior of SU-FREIs under seismic events. To examine the accuracy of model, the response of a base isolated structure to different input earthquakes were simulated and compared with the results of a previous shake table study. Results of this study indicate that the proposed Bouc-Wen Model is robust and reasonably accurate in seismic analysis of SU-FREIs.  相似文献   
7.
This paper presents a robust mixed force and displacement control strategy for testing of base isolation bearings in real-time hybrid simulation. The mixed-mode control is a critical experimental technique to impose accurate loading conditions on the base isolation bearings. The proposed mixed-mode control strategy consists of loop-shaping and proportional-integral-differential controllers. Following experimental validation, the mixed-mode control was demonstrated through a series of real-time hybrid simulation. The experimental results showed that the developed mixed-mode control enables accurate control of dynamic vertical force on the base isolation bearings during real-time hybrid simulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号