首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2019年   3篇
  2018年   3篇
  2014年   4篇
  2013年   16篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
In this study, stress-controlled cyclic simple shear tests were performed on sand specimens with up to 10% silt or clay contents, and coupled effects of plasticity, fines content (FC), relative density (DR) and CSR (cyclic stress ratio) were investigated. The results demonstrated that for sands with low fines content, reasonable trends were obtained when the packing index control parameter was selected as DR. Also, clean sand specimens demonstrated highest liquefaction strength compared with that of sands with fines up to 10% FC. The effect of fines’ plasticity became apparent as the FC increases and CSR reduces in relatively denser specimens.  相似文献   
2.
This article presents the experimental results of a study on reinforced-concrete frames infilled with masonry with openings. The frames were designed according to current European codes. They were built in a scale 1:2.5 and infilled with masonry walls. Mid-size window and door openings were located centrically and eccentrically and were executed with and without tie-columns around them. Presence of masonry infill, although not accounted for in design, improved the system behavior (increase in stiffness, strength and energy dissipation capacity) at drift levels of up to 1%. During the test, openings did not influence the initial stiffness and strength at low drift levels. Their presence became noticeable at higher drift levels, when they lowered the energy dissipation capacity of the system. The infill wall had a multiple failure mechanism that depended on the opening height and position. Tie-columns controlled the failure type, independent of the opening type, prevented out-of-plane failure of the infill, and increased the system's ductility. Negative effects of the infill on the frame were not observed. The infill's contribution could be deemed positive as it enhanced the overall Structural Performance Level. Analytical expressions commonly used for infilled frames underestimate the infill's contribution to strength and stiffness and overestimate the contribution of the bare frame.  相似文献   
3.
There are many reinforced concrete structures throughout the world that have been built in the past decades that lack appropriate seismic details and reinforced by plain bars. To study the behavior of such buildings, seven beams have been tested under cyclic and monotonic load. The specimens include substandard specimens, with deficient seismic details and reinforced by plain bars, specimens designed in accordance with ACI-318-99 but reinforced by plain bars, and standard specimens reinforced by deformed bars. The tests indicate that the substandard specimens sustain relatively large slip of longitudinal bars, separation of specimen relative to foundation and sliding at large deformation phase, low initial stiffness ratio, limited lateral displacement capacity, and loss of nominal yield strength. The specimens reinforced by plain bars in accordance with ACI-318-99 perform almost similar to standard specimens with deformed bars, in terms of elastic stiffness and lateral displacement ductility; but, they sustain larger slip, and smaller yield strength. Failure of all specimens reinforced by plain bars is characterized by flexural cracks without visible shear failure. Residual shear strength of substandard specimens is modeled by dowel action of longitudinal bars to predict a lower limit for lateral strength of the specimens.  相似文献   
4.
In this article, an experimentally validated model is proposed in order to take into account main sources of performance degradation that could be experienced by friction-based devices during a seismic event. Particular attention is dedicated to the degradation of friction characteristics due to repetition of cycles and consequent temperature rise. This effect can be responsible for overestimate of the dissipation capacity of the device. The proposed model of frictional behavior is suitable for immediate implementation in generalized structural analysis codes and provides an important design tool for realistic assessment of the seismic response of structures equipped with friction-based isolators.  相似文献   
5.
Connections of steel moment frames are vulnerable to brittle failure. Providing a perforation near the beam-ends is suggested as a potential method to improve seismic behavior of these structures. This article presents a numerical study on the energy dissipation of steel moment connections with perforated beam. Models with elongated circular openings of different dimensions and location are analyzed and compared based on the global and local damage indices, predicted failure time and dissipated energy. Results show that an RWS connection with a proper opening size can develop reasonable inelastic deformations and provide an acceptable seismic improvement to moment-resisting frames.  相似文献   
6.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   
7.
The work is aimed at the prediction of the cyclic response of bolted beam-to-column joints starting from the knowledge of their geometrical and mechanical properties. To this scope a mechanical model is developed within the framework of the component approach already codified by Eurocode 3 for monotonic loadings.

Accuracy of the developed mechanical model is investigated by means of the comparison between numerical and experimental results with reference to an experimental program carried out at Salerno University. The obtained results are encouraging about the possibility of extending the component approach to the prediction of the cyclic response of bolted connections.  相似文献   
8.
Four-story, single-bay, 1/5 scaled reinforced concrete frames were tested with and without infill walls. Frames were subjected to pseudo-static cyclic loading. In addition, impact hammer measurements were made to obtain the natural frequencies and modal shapes at certain drift levels. It was observed that infill walls cause major changes on both the stiffness and the drift behavior of the frames. Effect of observed changes can be either advantageous or disadvantageous depending on failure mode. Results showed that the distribution of drift that is based on the mode shapes has higher local concentrations than the distribution observed under forced static conditions.  相似文献   
9.
Cyclic pore pressure response of low plastic fines is examined with regard to factors influencing overall behavior of such soils under repeated loads. A model for pore pressure generation under repeated loads and another model for relationship between cyclic pore pressure and straining are proposed. The models are developed in consideration of an extended database generated through a comprehensive literature review. The models are evaluated based on the comparisons between predicted and measured pore pressure responses.  相似文献   
10.
Experimental tests on four full-scale exterior unreinforced reinforced concrete (RC) beam-column joints, representative of the existing non-conforming RC frame buildings, are carried out. The specimens have different longitudinal reinforcements (plain or deformed) and they are designed in order to be representative of two typical design practices (for gravity loads only or according to an obsolete seismic code). Different failure modes are observed, namely joint failure with or without beam yielding. The local response of the joint panel is analyzed. The different joint deformation mechanisms and their contribution to the deformability and to the energy dissipation capacity of the sub-assemblages are evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号