首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2010年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We investigated fossil tooth enamel of mammals and crocodiles from two Mio-Pliocene East-African formations (Lukeino and Mabaget Fms) using infrared spectroscopy and chemical and stable-isotope analyses. Infrared spectra indicate that the fossil enamel contains biological apatite (bioapatite), without significant secondary carbonate contaminations. Several empirical infrared indexes were used to analyze the crystal–chemical characteristics of enamel. Fossil enamel has less organic matter, water and structural carbonate of apatite than modern enamel with which it was compared. Fossil apatite has a better crystallinity than bioapatite. The calcium/phosphorus mass ratio and the fluorine content of fossil apatite show intermediate values between bioapatite and geological fluorapatite. The samples also display significant crystal-chemical variations, depending on the vertebrate group (mammals vs. reptiles) and the taphonomic context (Lukeino Fm vs. Mabaget Fm). In spite of these changes, no relationship was observed between the chemical contents (carbonate and fluorine) and the stable-isotope ratios of carbonate (δ13C and δ18O) in fossil enamel. Preservation of the palaeoenvironmental signals is strongly supported by the fact that the stable-isotope composition of the three investigated fossil mammalian taxa (deinotheres, equids and hippos) is consistent with their ecological features. For instance, typical C3- and C4-plant isotope compositions are reflected in the deinotheres and equids, respectively, and amphibious hippos display lower δ18O values than terrestrial herbivores, as expected.  相似文献   
2.
Stable carbon and oxygen isotope values (δ13C, δ18O) were obtained for structural carbonate in the bioapatite of archaeological bones from Guatemala and Sudan using several common analytical methods. For the Sudan samples, the different methods produced δ13C values within ±0.1‰ and δ18O values within ±0.7‰, on average. The isotopic results for the Guatemala samples were similar in reproducibility to the Sudan samples when obtained using methods that employed lower reaction temperatures and reactions in sealed vessels. However, many Guatemala samples had highly variable and extremely low δ18O values when reacted at higher temperatures in vessels that remained open to cryogenic traps. The latter arrangement caused reaction products to be removed immediately upon their production. The anomalously low δ18O values are related to the production of a contaminant gas that causes the m/z 46/44 ratio to be lowered, either by adding to the m/z 44 peak or subtracting from the m/z 46 peak. That said, potential contaminant materials were not detectable in “anomalous” bones using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, or inductively-coupled plasma atomic emission spectroscopy. However, subtle structural and chemical differences between “normal” and “anomalous” samples were observed, most notably in the FTIR ν2 CO3 domain. We suggest that these changes promote volatilization of an oxyphosphorus compound and oxygen isotope fractionation between PO derived from this compound and CO2 derived from bone carbonate. Production of the contaminant gas and the related “anomalous” δ18O values is reversible if the reaction occurs within a sealed vessel for a sufficient period of time, which allows a “back-reaction” to occur.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号