首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2019年   1篇
  2018年   5篇
  2014年   3篇
  2013年   18篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
This article presents a study on welded beam-to-column joints of moment-resisting steel frames. The main features of the joint specimens are summarised, in order to identify key parameters influencing the joint response as well as their low-cycle fatigue endurance. The cyclic behavior and the low-cycle fatigue strength of the connections were initially assessed by cyclic quasi-static testing, carried out at the Technical University of Milan. Analysis of the results has been carried out in order to verify the validity of a linear damage accumulation model combined with a low-cycle fatigue approach based on S-N lines concept. Moreover, a criterion to predict the type of failure and a procedure of appraising the fatigue endurance are presented and their validity proved by the results of variable amplitude tests.  相似文献   
2.
Superelastic Shape Memory Alloys (SE SMAs) are unique alloys that have the ability to undergo large deformations and return to their undeformed shape by removal of stresses. This study aims at assessing the seismic behavior of beam-column joints reinforced with SE SMAs. Two large-scale beam-column joints were tested under reversed cyclic loading. While the first joint was reinforced with regular steel rebars, SE SMA rebars were used in the second one. Both joints were selected from a Reinforced Concrete (RC) building located in the high seismic region of western Canada and designed and detailed according to current Canadian standards. The behavior of the two specimens under reversed cyclic loading, including their drifts, rotations, and ability to dissipate energy, were compared. The results showed that the SMA-reinforced beam-column joint specimen was able to recover most of its post-yield deformation. Thus, it would require a minimum amount of repair even after a strong earthquake.  相似文献   
3.
In the last decades, particular attention has been paid to the seismic vulnerability of existing reinforced concrete buildings designed for gravity loads only. Such buildings, designed before the introduction of capacity design in modern seismic codes, are very common, particularly in seismic prone countries of the Mediterranean area. Due to poor detailing and lacking of capacity design principles, high vulnerability has been highlighted in several past studies. In this article, inadequate seismic response and peculiar damage pattern are investigated by means of shake table tests performed on a 1:2 scaled 3-story infilled prototype. Particular attention is given to the role of beam-column joints and frame-panel interaction. The effectiveness of the EC8-based assessment approach is then evaluated; both linear and nonlinear numerical models, with different levels of sophistication, have been implemented in order to explore their behavioral aspects.  相似文献   
4.
Many existing reinforced concrete (RC) structures around the world have been designed to sustain gravity and wind loads only. Past earthquake reconnaissance showed that strong earthquakes can lead to substantial damage to non-seismically designed RC buildings, particularly to their beam-column joints. This paper presents a novel retrofit method using buckling-restrained haunches (BRHs) to improve the seismic performance of such joints. A numerical model for RC joints is introduced and validated. Subsequently, a new seismic retrofit strategy using BRHs is proposed, aimed at relocating plastic hinges and increasing energy dissipation. The results indicate the retrofit method can effectively meet the performance objectives.  相似文献   
5.
A reduced beam section (RBS) is a new type of connection in steel moment resistant frames. In addition to the major benefits, RBS has its own weaknesses, such as web local buckling and lateral torsional buckling. The purpose of this paper is to improve the performance of European I-beam profile (IPE) with an arched cut in the flange, using a diagonal stiffener of the beam web. With the help of laboratory tests and numerical models, it was found that the use of a diagonal stiffener in the area of an arched cut increased the energy dissipation and plastic rotation capacity of RBS connection.  相似文献   
6.
The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the seismic behavior of a substandard RC building was investigated through full-scale, shake-table tests during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in columns and joints to replicate old construction practices. After the bare building was initially damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic tests. The PTMS technique improved considerably the seismic performance of the tested building. While the bare building experienced critical damage at an earthquake of PGA = 0.15 g, the PTMS-strengthened building sustained a PGA = 0.35 g earthquake without compromising stability.  相似文献   
7.
We introduce a direct Displacement-Based Design methodology for glued laminated timber portal frames with moment-resisting doweled joints. We propose practical expressions to estimate ultimate target displacement and equivalent viscous damping, and we demonstrate that these expressions provide prior values that are close to those obtained a posteriori using a more refined model. Applied to case studies, the method yields base-shear forces lower than those obtained using the force-based approach of Eurocode 8. This is due to the high dissipation capacity of the specific connection technology, which apparently is conservatively accounted for in the q-factor of Eurocode 8.  相似文献   
8.
This article is the first of two companion articles that evaluate the seismic performance of steel moment-resisting frames with innovative beam-to-column connections that incorporate shape memory alloys (SMAs) to dissipate energy and provide recentering effectively during large earthquakes. Two types of SMA elements are considered: (1) superelastic SMA elements with recentering capability and (2) martensitic SMA elements with high energy dissipation capacity. This article describes the fundamental engineering characteristics of these SMA connections, their modeling in connections for nonlinear dynamic finite element analysis of building frames, and the validation of these connection models using data from full-scale experimental tests that were performed in previous research at Georgia Institute of Technology. Using three- and nine-story partially restrained (PR) moment frames selected as case studies from the SAC Phase II Project, nonlinear time history analyses of frames with and without SMA connections were conducted using suites of ground acceleration records. The beneficial effects of SMA connections on peak and residual deformation demands are quantified and discussed.  相似文献   
9.
In this article, experimental and finite element (FE) numerical investigations on interior wide-beam column joints are presented. The experimental research consisting of three full-scale interior wide-beam column specimens was carried out at Nanyang Technological University, Singapore to study the seismic behavior. Details of the test results are discussed to understand the specimens' seismic performance in terms of general behavior, hysteresis loops response, and strain profiles of longitudinal reinforcement. In the FE numerical study, the three-dimensional (3D) model developed is validated by comparing the analysis results with the experimental test results, which has shown a good agreement. A parametric study is performed to elucidate more information and to understand the influence of critical parameters affecting the joint behavior such as column axial load, beam anchorage ratio, and wide beam participation.  相似文献   
10.
Glass fiber-reinforced polymer (GFRP) reinforcing bars were used recently as main reinforcement for concrete structures. The noncorrodible GFRP material exhibits linear-elastic stress-strain characteristics up to failure with relatively low modulus of elasticity compared to steel. This raises concerns on GFRP performance in structures where energy dissipation, through plastic behavior, is required. The objective of this research project is to assess the seismic behavior of concrete beam-column joints reinforced with GFRP bars and stirrups. Two full-scale exterior T-shaped beam-column joint prototypes are constructed and tested under simulated seismic load conditions. One prototype is totally reinforced with GFRP bars and stirrups, while the other one is reinforced with steel. The experimental results showed that the GFRP reinforced joint can sustain a 4.0% drift ratio and can recover its deformation without any significant residual strains. This indicates the feasibility of using GFRP bars and stirrups as reinforcement in the beam-column joints subjected to seismic-type loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号