首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2006年   1篇
  1995年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Channel changes on the lower Latrobe River since the late 1800s include a 25 per cent reduction in channel length due to artificial meander cutoffs, increases in mean channel width, increased channel instability and incision of up to 1.05 m. Hydraulic changes at the Rosedale gauge include increases in bankfull flow velocity and a 67 per cent increase in channel capacity, resulting in a threefold reduction of over-bank flow duration. The extensive channelisation works have reduced the frequency of minor flooding and the period offloodplain inundation, but these and other human impacts have severely degraded the stream environment.  相似文献   
2.
An understanding of the nature and magnitude of hydrological, physical habitat and physico‐chemical effects resulting from surface‐water diversions in river systems is essential for effective management of water resources. For most coastal‐draining rivers in New South Wales, however, there are few data available on irrigation diversions, their hydrological impacts and environmental effects. This paper therefore presents an analysis of mean daily surface‐water diversions for pasture irrigation from approximately three years of metered data and the resultant effects on daily flows and aquatic habitats in the Bega‐Bemboka River. The period of analysis of the hydrological effects of irrigation diversions is extended to the full length of record (approximately five years) for gauging stations most affected by irrigation diversions, using Maintenance of Variance Extension Type 1 (MOVE.1) modelling techniques. The annual mean, median and peak daily rates of water diversion by metered surface‐water licences used to irrigate 925 ha of dairy pasture are 10.5 Ml d?1, 7.3 Ml d?1 and 41.5 Ml d?1, respectively. Diversion effects on flow duration statistics are such that the measured 90th and 95th daily flow duration percentiles at the gauging station most affected by upstream irrigation diversions are equivalent to the 97th and 99th flow duration percentiles, respectively, under MOVE.1 modelled natural flow conditions. While diversions for irrigation over the three‐year data period account for only 6.6% of total flow volumes, diversions as a proportion of daily surface‐water inflows increase exponentially under decreasing flow rates. Median and maximum daily diversion rates attain 91% and 118%, respectively, of total surface‐water inflows to the diversion‐affected reach when upstream inflows range from 15 to 20 Ml d?1. This exponentially‐increasing relationship between daily diversion rates and declining surface‐water inflows suggests that ‘rule of thumb’ guidelines on sustainable diversion limits based on mean or median annual percentage diversion volumes need to be applied cautiously to river systems with no or limited capacity to manipulate flows to meet downstream consumptive demands.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号