首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   3篇
  1963年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Strong ground motion close to a fault can be expected to be very large, so its estimation is essential for human safetv. Although a few strong-motion data exist for the west Eurasian region, we proposed in a previous work [Berge-Thierry et al., 2003] an attenuation relation for spectral acceleration using strong-motion data recorded in west Eurasia (mainly in Europe) and some in the western United States: this relationship was derived for the French Safety Rule, which is applied for seismic hazard assessment at nuclear power plants. In this study, we propose a constraining of the amplitude saturation term related to the proximity of the fault, and an adding of an amplitude saturation term in the regression model. We add, to the data-set previously used to derive the west Eurasian attenuation relationship strong-motions recorded during recent large earth-quakes: the 1995 Hyogo-ken Nanbu (Kobe) event in Japan and the 1999 Kocaeli (Izmit) event in Turkey. The regression analysis, adopted from Fukushima and Tanaka [1990], is non-linear, so an iterative procedure is applied. The determined regression coefficients lead to a prediction of a peak ground acceleration of about 0.7 g for soil site conditions at a fault distance of 0.5 km. The Q coefficient deduced, from the distance coefficient is in agreement with scattering Q models. The introduction of the saturation term leads to significantly lower predictions of average spectral accelerations at short distances as compared with using the Berge-Thierry et al. [2003] empirical model.  相似文献   
3.
The purpose of this study is to compare the site effect section of building codes (EC8 and UBC97) with the set of data provided by the Kyoshin network. In order to obtain a set of site coefficients and spectral shapes, we have first deduced an attenuation law for both horizontal and vertical motion. Site conditions are represented by the shear velocity averaged over the upper 30 m (V s 30). Our site classification (4 categories similar to those proposed in the new ECS and the UBC97) is based on borehole investigations at every station. This classification has permitted to distinguish clearly four response spectra which demonstrates the efficiency of V s 30 as characterising site conditions. Our law is then used to test site coefficients and spectral shapes of building codes ECS and UBC97. Concerning spectral shapes and site coefficients, our results are found to be in good agreement with EC8 and UBC97 only if category B (400<V s 30<800 m/s) is taken as reference. We also conclude that a site which is characterised as “rock” on geological criteria can not generally be classified in category A (V s 30>800 m/s). This suggests that classification in category A should be based only on field measurements. Concerning vertical motion, our analysis of the K-NET data shows that the ratio av/ah (vertical peak ground acceleration over horizontal peak ground acceleration) is between 0.50 and 0.68.  相似文献   
4.
This paper presents response spectral attenuation laws used in the new French Safety Rule, which is the reference for nuclear safety studies in France. Attenuation laws were derived from 965 horizontal and 485 vertical components from a two-step inversion method and accounts for geometrical spreading, anelastic attenuation and geological site condition. The datasets are mainly constituted of European strong motion records (83%) recently collected and homogeneously processed. In order to complete the distribution data beyond magnitude 6, a few American records were added, representing 17% of the datasets. The magnitude type and source-to-site distance definitions chosen to derive the laws are tested with respect to other definitions. These parametric tests induce a conservative law, for some magnitude and distance ranges of interest. The residual values between observed and predicted spectral accelerations are studied and do not exhibit any bias. The inferred laws are in good agreement with classical strong motion attenuation laws.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号