首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2008年   1篇
  1999年   1篇
  1998年   1篇
  1989年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
The investigation of archaeological sites of maritime nature started in Egypt more than a century ago, with the discovery of the Dahshur boats (Haldane 1998) and the ancient harbour of Pharos (Jondet 1912); however, education in maritime and underwater archaeology in Egypt is still in its infancy. This paper will look at the development of maritime archaeology in Egypt as a scientific discipline and the progress achieved to date in providing Egyptian archaeologists with education and training in aspects of maritime archaeology and underwater cultural heritage.  相似文献   
3.
4.
5.
6.
7.
Free-standing rigid objects and structures are dominantly found to exhibit rocking behavior and can be vulnerable to overturning during an earthquake as demonstrated by numerous past earthquake events. Such objects are typically considered to be displacement sensitive with their rocking response being well presented by the Peak Displacement Demand (PDD) parameter of the supporting floor’s motion. This in turn can be directly related to an object’s width (along the direction of motion) for assessing its vulnerability to overturn. Such findings have been sufficiently justified by refined dynamic analysis supported by experimental evaluations which were based on rigid blocks with uniform geometric format (i.e., regular in their mass distribution). However, vulnerable rocking objects can be asymmetric and accordingly their sensitivity to floor displacement cannot be directly related to their width. The key parameter which defines irregular objects’ response to rocking motion is represented by the degree of eccentricity of their center of mass. In this study, the well-known rocking equation of motion is reconfigured and devised to model the rocking responses for 280 irregular objects undergoing eight earthquake motions which included artificial and recorded earthquakes. Analytical results obtained from solving the adjusted equation of motion were evaluated with sophisticated finite element (FE) models simulating the 280 irregular cases. This experimentally validated FE modeling approach was found to be time- and cost-effective for understating the rocking behavior of asymmetric objects as well as clarifying an interesting relationship between the object’s damping level and the condition of the supporting base (i.e., whether being provided with supports at the points of rotation or not). The rocking response of irregular objects was found to be highly influenced by the level of eccentricity of the object when excited by motions with high displacement amplitudes, while such influence was not found noticeable by wider objects. Based on the developed trends between the maximum top displacement of irregular objects and the PDD, an expression for estimating the rocking amplitudes is proposed which is a function of the object’s eccentricity.  相似文献   
8.
9.
Building contents that include cabinets housing electronic equipment are typically not rigidly secured to the floor, nor to the adjacent wall except in regions of high seismic activities. The behavior of unrestrained building contents in an earthquake is a cause of concern because of the consequence of damage to certain equipment or other forms of fragile items. Much of the research reported in the literature has been devoted to studying the rocking and sliding motion behavior of base-excited rigid objects and their risks of overturning. In contrast, this paper is concerned with estimating the impact acceleration that can be generated by the pounding of the rocking object onto the floor. Algebraic expressions for predicting the acceleration level, which can be translated into dynamic force values, are derived and illustrated by case studies. Importantly, the proposed expressions have been verified by comparisons with results from both simulated and physical experiments. In illustrating the use of the proposed analytical procedure, a parametric experimental study has been undertaken on a cushion material to study the sensitivity of its static and dynamic stiffness to changes in the boundary conditions of the cushion. The proposed calculation procedure, while simple to apply, can be used as a means of predicting shock and the dynamic forces that can be generated in an object in the course of the response to an earthquake.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号