首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A masonry pillar composed of solid clay bricks, cement mortar and infill is extracted from a historical structure and tested in concentric compression. It is subjected to cyclic and monotonic loads up to compressive failure.

In parallel, samples are extracted from the pillar and are subjected to destructive tests. Non-destructive tests are performed on the pillar, as well. The properties of the constituent materials are critically examined and their role in the maximum load reached and the failure mode obtained are discussed.

Finally, a finite element micro-model of the pillar is used for the simulation of the pillar test. The influence of the existing damage on the pillar is investigated using the model, resulting in a fair approximation of the global Young’s modulus, maximum load and the failure mode.

Highlights

●?A brick masonry pillar extracted from a historical building is tested in compression.

●?Material samples extracted from the pillar are characterized by mechanical tests.

●?A finite element micro-model of the pillar is used for the simulation of the compressive test.

●?The effect of damage on the compressive strength of the pillar is numerically investigated.  相似文献   
2.
3.
This paper presents hybrid simulations of a three-span R/C bridge among EU, US, and Canada. The tests involved partners located on both sides of the Atlantic with each one assigned a numerical or a physical module of the substructured bridge. Despite the network latency in linking remote sites located on the two sides of the Atlantic the intercontinental hybrid simulation was accomplished and repeated successfully, highlighting the efficiency, and repetitiveness of the approach. Adaptations, challenges, and limitations are discussed, focusing on the implications of network communication latency, the insensitivity of the sub-structuring arrangement, and the accuracy of the results obtained.  相似文献   
4.
ABSTRACT

Historic masonry structures are particularly sensitive to differential soil settlements. These settlements may be caused by deformable soil, shallow or inadequate foundation, structural additions in the building and changes in the underground water table due to the large-scale land use change in urban areas.

This paper deals with the numerical modeling of a church nave wall subjected to differential settlement caused by a combination of the above factors. The building in question, the church of Saint Jacob in Leuven, has suffered extensive damage caused by centuries-long settlement. A numerical simulation campaign is carried out in order to reproduce and interpret the cracking damage observed in the building.

The numerical analyses are based on material and soil property determination, the monitoring of settlement in the church over an extended period of time and soil-structure interaction. A sensitivity study is carried out, focused on the effect of material parameters on the response in terms of settlement magnitude and crack width and extent. Soil consolidation over time is considered through an analytical approach. The numerical results are compared with the in-situ observed damage and with an analytical damage prediction model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号