首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2013年   4篇
  2012年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
The Central Apennines are affected by frequent earthquakes of moderate magnitude that occur mainly within the upper part of the crust at depths of <15 km. A large number of cold gas emissions that are rich in CO2 are also found in the region. One particular vent with a high rate of degassing was equipped with a sensor to measure flow rates, which were recorded for a number of different periods between 2005 and 2010. Factors that could affect potentially CO2 flow rates include barometric pressure, atmospheric temperature, precipitation and local seismicity. Our analysis indicates that the periods of anomalous flow rate were related not to the environmental factors but probably to the deformative processes of the crust associated with the local seismicity. Local seismic events as expression of geodynamic processes occurred always before and during these anomalous gas flow periods. This correlation exists only for events that occurred eastwards of the gas emission site close to the Martana fault zone. We herein consider this correlation as indication for a continuous interaction between the field of static strain and the deep fluid pressure. An approximation of the fluid pressure transmission towards the gas emission site gives reasonable values of 1–10 m2 sec?1. To make comparisons with the long‐term effects of the static strain, we also recorded the short‐term effects of the dynamic release of strain induced by the series of strong earthquakes that took place in L’Aquila in 2009. We detected a significant anomalous flow rate that occurred at the same time as this seismic sequence, during which widespread degassing was induced around the focal zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号