首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   1篇
  2022年   1篇
  2020年   9篇
  2019年   5篇
  2018年   25篇
  2017年   3篇
  2016年   9篇
  2015年   6篇
  2014年   1篇
  2013年   71篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2003年   5篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
31.
为了分析在不同激励下振动对古建筑的影响,选择苏州市省级文物保护单位——玉涵堂古建筑进行振动测试。记录了环境振动、地下轨道交通激励、人群社会活动激励和音响激励四种工况时一座两层砖木阁楼的振动信号。发现经过严格振动控制的地下轨道交通激励对古建筑振动的贡献可以忽略;环境振动和音响激励时段古建筑横向振动速度达标,而人群社会活动激励时段横向振动速度超标。从古建筑的建筑结构和功能区域划分以及人的激励形式三个方面对通常被忽视的人的因素进行了探讨,并提出了相应的减振措施。研究成果为其它类似两层砖木阁楼古建筑防护提供依据。  相似文献   
32.
T. Watanabe  A. Higuchi 《Geofluids》2014,14(3):372-378
Pore‐fluid pressure is a critical parameter that governs geodynamic processes including seismic activities. Its evaluation through geophysical observations provides us insights into these processes. The quantitative evaluation requires a thorough understanding of the influence of pore‐fluid pressure on geophysical parameters, such as seismic velocity and electrical conductivity. To study the influence of pore‐fluid pressure on these parameters, we have built a new apparatus with a pore‐fluid pressure control system, which is capable of simultaneously measuring elastic wave velocity and electrical conductivity. Our new apparatus employs two sets of plastic piston–cylinders for the electrical insulation and pore‐fluid pressure transmission. The pore fluid is electrically isolated from the metal work, and its pressure can be precisely controlled without significant contribution of the friction between the piston and cylinder. Our new apparatus was used for a simultaneous measurement of velocity and conductivity in a brine‐saturated Berea sandstone. Elastic wave velocity and electrical conductivity changed in response to the change in confining and pore‐fluid pressures, showing the usefulness of the new apparatus.  相似文献   
33.
ABSTRACT

Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.

Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.  相似文献   
34.
The vertical component of earthquake ground motion has generally been neglected in the earthquake-resistant design of structures. This is gradually changing due to the increase in near-source records obtained recently, coupled with field observations confirming the possible destructive effect of high vertical vibrations.

In this paper, simple procedures are suggested for assessing the significance of vertical ground motion, indicating when it should be included in the determination of seismic actions on buildings. Proposals are made for the calculation of elastic and inelastic vertical periods of vibration incorporating the effects of vertical and horizontal motion amplitude and the cross-coupling between the two vibration periods. Simplified analysis may then be used to evaluate realistic vertical forces by employing the vertical period of vibration with pertinent spectra without resorting to inelastic dynamic analysis.

Finally, a procedure is suggested for combining vertical and horizontal seismic action effects which accounts for the likelihood of coincidence, or otherwise, of peak response in the two directions.  相似文献   
35.
This paper contains technical information related to the Dinar project for the rehabilitation of moderately damaged reinforced concrete buildings after the 1 October 1995 Dinar earthquake. The structural appraisal of the damaged buildings, analytical studies leading to decisions regarding structural rehabilitation or demolition, the supervision on site of the rehabilitation and the overall coordination of the project was entrusted to the Middle East Technical University Earthquake Engineering Research Center [METU-EERC] by the Turkish Ministry of Public Works and Settlement. The project involved the rehabilitation of 35 moderately damaged RC buildings with a total floor plan area of 22 000 square metres.  相似文献   
36.
Seismic vulnerability of unreinforced masonry buildings is studied by means of simplified out-of-plane collapse mechanisms that take into account connections with transversal walls. According to experimental evidence, the analysis assumes that failure is reached with a rigid body motion of a part of the facade that falls down. Two classes of mechanism are examined: the overturning of the facade due either to a vertical crack at the connection or a diagonal crack on the transversal wall, both defined resorting to a simple model of masonry fabric, viewed as a regular assembly of rigid blocks and elastic plastic joints with friction but no cohesion. The use of simplified mechanisms give rise to an explicit evaluation of the seismic resistance to changes in the geometry and in the masonry fabrics, that could be used by practising engineers. This formulation is developed for both static horizontal actions and ground velocity peak, in the belief that the latter probably gives a better approximation of seismic action, while also providing, by comparison with the results of static forces, an estimate of the behaviour factor for unreinforced masonry. Eventually, the analytical forecasts are compared with numerical results obtained by means of the distinct element method.  相似文献   
37.
Recent studies provided opportunities to review some of the principles, which have been used in the formulations of internationally accepted code-recommendations relevant to the seismic design of ductile buildings also subjected to torsional phenomena. With the progress of this study, features emerged which are considered to have contributed to a better understanding of structural behaviour. Moreover, the identification of deeply embedded fallacies, relevant to ductile response, suggested the introduction of some changes in seismic design strategies, yet not widely known or appreciated. Reasons for necessary re-interpretations of traditional structural properties, together with illustrative examples, demonstrating applications, rather than set code-type rules, are offered.  相似文献   
38.
Assessment of landfill seismic response necessitates the availability of reliable dynamic material properties. During the past decade, geophysical surveys and computational studies have been conducted to investigate the seismic response of the Operating Industries, Inc. (OII) landfill in Southern California. In this paper, a survey and summary of available research results is presented. In addition, a set of Oil input-output seismic records during six earthquakes is thoroughly analysed. Spectral analyses are conducted to shed light on the landfill dynamic response characteristics. A simple shear beam model is found to be useful in modelling the landfill resonant behaviour. System identification techniques are employed to estimate the landfill stiffness and damping properties. These properties are defined by minimising the difference between computed and recorded acceleration response spectra at the landfill top. The identified stiffness properties are found to be near the lower bound of those documented through geophysical measure-ments. Identified damping of about 5% (at resonance) is within the range of earlier investigations. Comparisons of the computed and recorded accelerations show: (I) effectiveness of a linear viscous shear beam model in simulating the landfill dynamic behaviour, for the recorded small to moderate levels of dynamic excitation (up to 0.26 g peak lateral acceleration), and (ii) potential of the employed system identification procedure for analysis of input-output seismic motions.  相似文献   
39.
This paper shows the results of two passive experiments carried out at the European Volvi test site where a scaled building has been constructed. The first experiment was performed to study the motion of the structure excited by two small earthquakes. For one month, six strong-motion recorders were installed within the structure, at the top and at the basement. The analysis of the deformation of the structure has been assessed by computing the spectral ratio between the top and the bottom, with a special focus on soil-structure interaction. An analytical model was then proposed to reproduce the structure and soil-structure system behaviour. The soil-structure interaction was accounted for by using impedance functions. During the second experiment, we concentrated our efforts on the effect of the building vibration on the surface ground motion. An explosive shot was fired and several strong-motion recorders were installed on the ground close to the structure that allowed us to clearly identify a monochromatic wave coming from the building, in the time and frequency domains. This experiment allows us to demonstrate the non-negligible effect of the soil-structure-soil interaction that may disturb the surrounding ground motion.  相似文献   
40.
Classification of earthquake strong ground motion (SGM) records is performed using fuzzy pattern recognition to exploit knowledge in the data that is utilised in a genetic algorithm (GA) search and scaling program. SGM records are historically treated as “fingerprints” of certain event magnitude and mechanism of faulting systems recorded at different distances on different soil types. Therefore, databases of SGM records of today present data of complex nature in high dimensions (many of the dimensions—or SGM parameters in time and frequency domain—are presently available from different archives). In this study, simple ground motion parameters were used but were combined and scaled nonlinearly such that the physical properties of the data could be preserved while reducing its dimensionality. The processed data was then analysed using fuzzy c-means (FCM) clustering method to explore the possibility of meaningfully representing earthquake SGM data in lower dimensions through finding subsets of mathematically similar vectors in a benchmark database. This representation can be used in practical applications and has a direct influence on the processes of synthesising ground motion records, identifying unknown ground motion parameters (e.g. soil type in this study), improving the quality of matching SGM records to design target spectra, and in rule generalisation for response. The results showed that the stochastic behaviour of earthquake ground motion records can be accurately simplified by having only a few of motion parameters. The very same parameters may also be utilised to derive unknown characteristics of the motion when the classification task on “training” records is performed carefully. The clusters are valid and stable in time and frequency domain and are meaningful even with respect to seismological features that were not included in the classification task.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号