首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   6篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   18篇
  2019年   17篇
  2018年   35篇
  2017年   17篇
  2016年   22篇
  2015年   15篇
  2014年   17篇
  2013年   102篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2003年   8篇
  2002年   2篇
  2000年   1篇
  1999年   4篇
  1997年   1篇
  1994年   1篇
排序方式: 共有334条查询结果,搜索用时 93 毫秒
91.
Recent studies provided opportunities to review some of the principles, which have been used in the formulations of internationally accepted code-recommendations relevant to the seismic design of ductile buildings also subjected to torsional phenomena. With the progress of this study, features emerged which are considered to have contributed to a better understanding of structural behaviour. Moreover, the identification of deeply embedded fallacies, relevant to ductile response, suggested the introduction of some changes in seismic design strategies, yet not widely known or appreciated. Reasons for necessary re-interpretations of traditional structural properties, together with illustrative examples, demonstrating applications, rather than set code-type rules, are offered.  相似文献   
92.
Assessment of landfill seismic response necessitates the availability of reliable dynamic material properties. During the past decade, geophysical surveys and computational studies have been conducted to investigate the seismic response of the Operating Industries, Inc. (OII) landfill in Southern California. In this paper, a survey and summary of available research results is presented. In addition, a set of Oil input-output seismic records during six earthquakes is thoroughly analysed. Spectral analyses are conducted to shed light on the landfill dynamic response characteristics. A simple shear beam model is found to be useful in modelling the landfill resonant behaviour. System identification techniques are employed to estimate the landfill stiffness and damping properties. These properties are defined by minimising the difference between computed and recorded acceleration response spectra at the landfill top. The identified stiffness properties are found to be near the lower bound of those documented through geophysical measure-ments. Identified damping of about 5% (at resonance) is within the range of earlier investigations. Comparisons of the computed and recorded accelerations show: (I) effectiveness of a linear viscous shear beam model in simulating the landfill dynamic behaviour, for the recorded small to moderate levels of dynamic excitation (up to 0.26 g peak lateral acceleration), and (ii) potential of the employed system identification procedure for analysis of input-output seismic motions.  相似文献   
93.
This paper shows the results of two passive experiments carried out at the European Volvi test site where a scaled building has been constructed. The first experiment was performed to study the motion of the structure excited by two small earthquakes. For one month, six strong-motion recorders were installed within the structure, at the top and at the basement. The analysis of the deformation of the structure has been assessed by computing the spectral ratio between the top and the bottom, with a special focus on soil-structure interaction. An analytical model was then proposed to reproduce the structure and soil-structure system behaviour. The soil-structure interaction was accounted for by using impedance functions. During the second experiment, we concentrated our efforts on the effect of the building vibration on the surface ground motion. An explosive shot was fired and several strong-motion recorders were installed on the ground close to the structure that allowed us to clearly identify a monochromatic wave coming from the building, in the time and frequency domains. This experiment allows us to demonstrate the non-negligible effect of the soil-structure-soil interaction that may disturb the surrounding ground motion.  相似文献   
94.
Classification of earthquake strong ground motion (SGM) records is performed using fuzzy pattern recognition to exploit knowledge in the data that is utilised in a genetic algorithm (GA) search and scaling program. SGM records are historically treated as “fingerprints” of certain event magnitude and mechanism of faulting systems recorded at different distances on different soil types. Therefore, databases of SGM records of today present data of complex nature in high dimensions (many of the dimensions—or SGM parameters in time and frequency domain—are presently available from different archives). In this study, simple ground motion parameters were used but were combined and scaled nonlinearly such that the physical properties of the data could be preserved while reducing its dimensionality. The processed data was then analysed using fuzzy c-means (FCM) clustering method to explore the possibility of meaningfully representing earthquake SGM data in lower dimensions through finding subsets of mathematically similar vectors in a benchmark database. This representation can be used in practical applications and has a direct influence on the processes of synthesising ground motion records, identifying unknown ground motion parameters (e.g. soil type in this study), improving the quality of matching SGM records to design target spectra, and in rule generalisation for response. The results showed that the stochastic behaviour of earthquake ground motion records can be accurately simplified by having only a few of motion parameters. The very same parameters may also be utilised to derive unknown characteristics of the motion when the classification task on “training” records is performed carefully. The clusters are valid and stable in time and frequency domain and are meaningful even with respect to seismological features that were not included in the classification task.  相似文献   
95.
Fragility functions that estimate the probability of exceeding different levels of damage in slab-column connections of existing non-ductile reinforced concrete buildings subjected to earthquakes are presented. The proposed fragility functions are based on experimental data from 16 investigations conducted in the last 36 years that include a total of 82 specimens. Fragility functions corresponding to four damage states are presented as functions of the level of peak interstory drift imposed on the connection. For damage states involving punching shear failure and loss of vertical carrying capacity, the fragility functions are also a function of the vertical shear in the connection produced by gravity loads normalised by the nominal vertical shear strength in the absence of unbalanced moments. Two sources of uncertainty in the estimation of damage as a function of lateral deformation are studied and discussed. The first is the specimen-to-specimen variability of the drifts associated with a damage state, and the second the epistemic uncertainty arising from using small samples of experimental data and from interpreting the experimental results. For a given peak interstorey drift ratio, the proposed fragility curves permit the estimation of the probability of experiencing different levels of damage in slab-column connections.  相似文献   
96.
In this paper, the methodology for evaluation of conventional and adaptive pushover analysis presented in a companion paper is applied to a set of eight different reinforced concrete buildings, covering various levels of irregularity in plan and elevation, structural ductility and directional effects. An extensive series of pushover analysis results, monitored on various levels is presented and compared to inelastic dynamic analysis under various strong motion records, using a new quantitative measure. It is concluded that advanced (adaptive) pushover analysis often gives results superior to those from conventional pushover. However, the consistency of the improvement is unreliable. It is also emphasised that global response parameter comparisons often give an incomplete and sometimes even misleading impression of the performance.  相似文献   
97.
A road-network reliability analysis for a scenario seismic event is performed for a region of southern Italy characterised by a large number of small to medium municipalities quite close to each other and served by a dense network of roads. Among the many functions of the road network, whose links may fail after an earthquake due to the collapse of the bridges within them, the one selected for the present study is that of allowing rescue operations to be carried out at the sites of collapsed schools. For this to be possible, connection must be maintained between schools that survived, rescue centres and hospitals. Required elements for the study are the fragility curves of the bridges, the schools, the hospitals and the rescue centres. Output of the study is the expected value of the fraction of the total population in the area that is in need of assistance and cannot be hospitalised due to either failure of the network or other vulnerable components.  相似文献   
98.
New aspects of the frequency-dependent attenuation of the seismic waves travelling from Vrancea subcrustal sources toward NW (Transylvanian Basin) and SE (Romanian Plain) are evidenced by the recent experimental data made available by the CALIXTO'99 tomography experiment. The observations validate the previous theoretical computations performed for the assessment, by means of a deterministic approach, of the seismic hazard in Romania. They reveal an essential aspect of the seismic ground motion attenuation that has important implications on the probabilistic assessment of seismic hazard from Vrancea intermediate-depth earthquakes. The attenuation toward NW is shown to be a much stronger frequency-dependent effect than the attenuation toward SE and the seismic hazard computed by the deterministic approach fits satisfactorily well the observed ground motion distribution in the low-frequency band (<1Hz). The apparent contradiction with the historically-based intensity maps arises mainly from a systematic difference in the eigenperiods (type and size) of the buildings in the intra- and extra-Carpathians regions, thus the existing macroseismic data, based on buildings of small dimensions, i.e. with high eigenfrequency (5–10 Hz), can hardly be representative of the real hazard for new and large dimension, tall buildings, with eigenfrequency above 1 Hz.  相似文献   
99.
The role of soil-structure interaction (SSI) in the seismic response of structures is reex-plored using recorded motions and theoretical considerations. Firstly, the way current seismic provisions treat SSI effects is briefly discussed. The idealised design spectra of the codes along with the increased fundamental period and effective damping due to SSI lead invariably to reduced forces in the structure. Reality, however, often differs from this view. It is shown that, in certain seismic and soil environments, an increase in the fundamental natural period of a moderately flexible structure due to SSI may have a detrimental effect on the imposed seismic demand. Secondly, a widely used structural model for assessing SSI effects on inelastic bridge piers is examined. Using theoretical arguments and rigorous numerical analyses it is shown that indiscriminate use of ductility concepts and geometric relations may lead to erroneous conclusions in the assessment of seismic performance. Numerical examples are presented which highlight critical issues of the problem.  相似文献   
100.
A new nonlinear soil-structure interaction macroelement is presented. It models the dynamic behaviour of a shallow strip foundation under seismic action. Based on sub-structured methods, it takes into account the dynamic elastic effect of the infinite far field, and the material and geometrical nonlinear behaviour produced in the near field of the foundation. Effects of soil yielding below the foundation as well as uplift at the interface are considered. Through the concept of macro-element, the overall elastic and plastic behaviour in the soil and at the interface is reduced to its action on the foundation. The macro-element consists of a non linear joint element, expressed in the three degrees of freedom of the strip foundation, reflecting the limited bearing capacity of the foundation. This model provides a practical and efficient tool to study the seismic response of a structure in interaction with the surrounding soil medium. Applications to a bridge pier show the potentialities of this kind of model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号